
http://www.IXsystems.com

http://www.IXsystems.com

http://www.IXsystems.com

10/20104

CONTENTS Contents

www.bsdmag.org 5

Olga Kartseva
Editor in Chief

olga.kartseva@software.com.pl

Editor in Chief:
Olga Kartseva

olga.kartseva@software.com.pl

Contributing:
Rob Somerville,Daniele Mazzocchio, Rashid N. Achilov, Joseba

Mendez, Laura Michaels
Lukas Holt, Caryn Holt, Laura Michaels

Special thanks to:
Marko Milenovic, Worth Bishop and Mike Bybee

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Marketing Director:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org

Advertising Sales:
Olga Kartseva

olga.kartseva@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Dear Readers!
Get make yourself comfortable and open this issue.
October has welcomed us with the cold weather and
nothing reminds us about summer.

You will �nd inside some advice about Building
VPNs written by Daniele. Joshua as alwaysshares
with us his thought in Let’s Talk.

Rob introuces the �rst part of his article, to teach
you how to perform a bare metal installation of
FreeBSD with networking enabled.

Hope you �nd the articles interesting and useful.
We want to remind you about answering short

questionnaires concerning our magazine.
This will certainly help us to improve our

magazine!

Thank you and enjoy your reading!
Thank you!

10/20104

CONTENTS Contents

www.bsdmag.org 5

LETS TALK
I.T. certifications and the value I got in it
Joshua Ebarvia

Joshua shares his experience with our readers, this time about
certifications.

Closed-source and unsupported drivers
with FreeBSD
Anton Borisov

Sooner or later you come to a conclusion that you need to
have an enhanced mobility throughout your home place. And
you decide to purchase an Wi-Fi card and put it into a home
gate-keeper. Do you know about troubles that could bring this
simple transaction like WiFi network card purchase?Some might
ask – is it necessary to buy a WiFi-card instead of a simple
AccessPoint (AP)? At first glance you can figure out that there
exist the fine models of ADSL-modems with wireless capabilities
and that could work as AP. However, it should be noticed that:
a) not all home connections to an Internet-provider go through a
„copper” like phone- or cable-line; b) you simply need to add a
WiFi-capability to an already working gate; c) a WiFi-card itself
costs several times cheaper of AP.

GET STARTED
Commissioning FreeBSD with the Drupal
Content Management Framework – Part 1
ROB SOMMERVILLE

With nearly 6000 modules and PHP support Drupal offers a
sophisticated web development platform as well as a thriving
community.

Drupal, originally conceived by Dries Buytaert, has a reputation
of being an extremely capable DContent Management System
(CMS) albeit with a steep learning curve. While many criticisms
concerning the complexity of the interface will be addressed in
the forthcoming Drupal 7 release (which is currently in the alpha
stage), Drupal 6 excels in stability, flexibility and high quality
code. The developers also subscribe to a transparent policy
towards security issues, and have a dedicated security team
which ensures that core modules remain high quality. Used as
the basis of many high profile sites.

HOW TO’S
Building VPNs on OpenBSD
Daniele Mazzocchio

A VPN is a network made up of multiple private networks situated
at different locations, linked together using secure tunnels over a
public (insecure) network, typically the Internet.

VPNs are becoming increasingly popular, as they allow
companies to join the LANs of their branches or subsidiaries into
a single private network (site-to-site VPNs) or to provide mobile
employees, such as sales people, access to their corporate
network from outside the premises (remote-access VPNs),
thus making accessing and sharing internal information much
easier.

06

12

34

40

10/2010 6

GET STARTED Commissioning FreeBSD with the Drupal Content Management Framework

www.bsdmag.org 7

Drupal, originally conceived by Dries Buytaert,
has a reputation of being an extremely capable
Content Management System (CMS) albeit with

a steep learning curve. While many criticisms concerning
the complexity of the interface will be addressed in the
forthcoming Drupal 7 release (which is currently in the

Commissioning FreeBSD

With nearly 6000 modules and PHP support Drupal offers
a sophisticated web development platform as well as
a thriving community.

with the Drupal Content Management Framework – Part 1

What you will learn…
• How to patch, upgrade and install ports, initially con�gure Apa-

che, PHP, MySQL and Drupal

What you should know…
• How to perform a bare metal installation of FreeBSD with ne-

tworking enabled etc.

Listing 1. Extract from rc.conf �le

hostname="drupal.merville.intranet"

Listing 2. Extract from hosts �le

192.168.0.117 drupal.merville.intranet drupal

Listing 3. Patching FreeBSD to the latest revision

pkg_add -r portaudit portupgrade

freebsd-update fetch

freebsd-update install

portaudit -Fda

portsnap fetch

portsnap extract

pkgdb -F

portupgrade -avbPR -–batch

Listing 4. PHP pre-compile set-up

cd /usr/ports/lang/php5

make config

cd /usr/ports/lang/php5-extensions

make config

Listing 5. Installing the ports

cd /usr/ports/databases/mysql55-server

make install BATCH=YES

cd /usr/ports/www/apache22

make install BATCH=YES

cd /usr/ports/lang/php5

make install BATCH=YES

cd /usr/ports/lang/php5-extensions

make install BATCH=YES

Listing 6. Ensure the PHP module is present in httpd.conf

LoadModule php5_module libexec/apache22/libphp5.so

10/2010 6

GET STARTED Commissioning FreeBSD with the Drupal Content Management Framework

www.bsdmag.org 7

alpha stage), Drupal 6 excels in stability, flexibility and
high quality code. The developers also subscribe to
a transparent policy towards security issues, and have
a dedicated security team which ensures that core
modules remain high quality. Used as the basis of many
high profile sites (Table 2).

Requirements
Drupal requires Apache/MySQL/PHP and may be
configured to run in a virtual host environment. In this
Howto, we will install Drupal as a stand-alone server.
This demo was prepared using Virtualbox 3.28 hosting
FreeBSD 8.1 with 1GB RAM and 20GB storage.

Stage 1 – Install FreeBSD
Proceed with a bare metal install of FreeBSD 8.1, and
configure user accounts, networking etc. so that the
install can download ports from the FreeBSD website.
To minimise server bloat, I performed a minimal install
without the ports tree etc. which took only a few
minutes.

Figure 1. Ensure the Apache module is enabled

Figure 2. Enable PHP support as required

Listing 7. Setting up the php.ini �le

cp /usr/local/etc/php.ini-production /usr/local/etc/

php.ini

Listing 8. drupal.conf

Apache configuration file for Drupal6

DocumentRoot "/usr/local/www/drupal6/"

<Directory "/usr/local/www/drupal6">

 Options Indexes FollowSymLinks

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

<IfModule dir_module>

 DirectoryIndex index.php

</IfModule>

ErrorLog "/var/log/drupal.log"

Listing 9. Drupal log �le

Added for PHP support

application/x-httpd-php php

application/x-httpd-phps phps

Listing 10. Drupal log �le

touch /var/log/drupal.log

Listing 11. MySQL con�g �le

cp /usr/local/share/mysql/my-medium.cnf /var/db/mysql/

my.cnf

Listing 12. Securing the root MySQL password

/usr/local/etc/rc.d/mysql-server onestart

mysqladmin password

Listing 13. Create user

mysqladmin -u root -p create drupal6

10/2010 8

GET STARTED Commissioning FreeBSD with the Drupal Content Management Framework

www.bsdmag.org 9

Stage 2
– Post install configuration of FreeBSD, install
the latest ports tree and AMP stack
First of all, ensure that /etc/rc.conf and /etc/hosts have
a valid hostname and IP address respectively, otherwise
Apache will not start. Replace with parameters that match
your network (Listing 1/2).

As we will require PHP library support for Apache, the
AMP stack etc. will have to be installed from ports rather

Listing 14. Login to MySQL

mysql -u root -p

Listing 15. SQL to create Drupal database and user login

GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, INDEX,

ALTER, LOCK TABLES, CREATE TEMPORARY TABLES ON 'drupal6'.

* TO 'drupal'@'localhost' IDENTIFIED BY '!1gH87i-LL34';

Listing 16. Installing Drupal and supporting modules

cd /usr/ports/www/drupal6

make install BATCH=YES

cd /usr/ports/www/drupal6-advanced_help

make install BATCH=YES

cd /usr/ports/www/drupal6-cck

make install BATCH=YES

cd /usr/ports/www/drupal6-chaos

make install BATCH=YES

cd /usr/ports/www/drupal6-ckeditor

make install BATCH=YES

cd /usr/ports/www/drupal6-image

make install BATCH=YES

cd /usr/ports/www/drupal6-imce

make install BATCH=YES

cd /usr/ports/www/drupal6-menu_block

make install BATCH=YES

cd /usr/ports/www/drupal6-nodewords

make install BATCH=YES

cd /usr/ports/www/drupal6-page_title

make install BATCH=YES

cd /usr/ports/www/drupal6-panels

make install BATCH=YES

cd /usr/ports/www/drupal6-path_redirect

make install BATCH=YES

cd /usr/ports/www/drupal6-pathauto

make install BATCH=YES

cd /usr/ports/www/drupal6-print

make install BATCH=YES

cd /usr/ports/www/drupal6-seo_checklist

make install BATCH=YES

cd /usr/ports/www/drupal6-views

make install BATCH=YES

cd /usr/ports/www/drupal6-webform

make install BATCH=YES

cd /usr/ports/www/drupal6-wysiwyg

make install BATCH=YES

cd /usr/ports/www/drupal6-zeropoint

make install BATCH=YES

Listing 17. Copying the Drupal settings �le across

cd /usr/local/www/drupal6/sites/default

cp default.settings.php-dist ./settings.php

chown www:www settings.php

Listing 18. Starting Apache

/usr/local/etc/rc.d/apache22 onestart

Figure 3. Drupal up and running ready for install

Figure 4. Use the settings in Listing 13/14/15

10/2010 8

GET STARTED Commissioning FreeBSD with the Drupal Content Management Framework

www.bsdmag.org 9

than packages. Best practice in a production environment
is to ensure the server is patched to the latest revision,
so we will install portaudit (which checks for known
vulnerabilities) and portupgrade which upgrades the ports
to the latest version. The binary freebsd-update applies
security updates to the base system, while portsnap will
pull the latest version of the ports tree onto our server.
As a precaution, pkgdb will be used to check pack age
registry database prior to upgrade.

NOTE
Running portsnap, pkgdb and portupgrade on an existing
FreeBSD installation should be done with caution as
the ports tree will be updated and may have unforeseen
implications – see the man pages and the FreeBSD
website for further details and caveats etc.

Depending on your bandwidth and server
specification, the entire upgrade may take some time
so if you prefer to perform the install without patching
the box, the ports tree can either be installed from the
FreeBSD DVD / ISO during Stage 1, or the commands
portsnap fetch and portsnap extract can be used to fetch
and extract the latest tree which takes a few minutes
(see Listing 3).

Now that we have the ports tree installed and updated,
we can proceed to install the AMP stack. Prior to the
compilation of PHP, we need to ensure that the Apache
module is enabled and any additional PHP extensions
are installed as required, e.g. curl or bz2 (Listing 4 and
Figure 1/2):

Figure 5. Drupal installing

Figure 6. Drupal login and email settings

Figure 7. Installation complete

Figure 8. Site up and running

10/2010 10

GET STARTED

Using make config can be repeated for MySQL and
Apache as required, but for the Drupal install to proceed
the only essential change is support for the Apache
module (Figure 1).

Now we need to download the ports and install (Listing
5). Using the BATCH=YES switch means we can leave
the server to perform an unattended install with the
default values if additional ports etc. are downloaded.
If fine control of the installation is required, this may be
omitted but further intervention will be needed during
the installation of various libraries etc. to fine tune any
settings.

Stage 3
 – Configure Apache, PHP and MySQL
Check that the following line is in DSO Support section
of /usr/local/etc/apache22/httpd.conf (Listing 6). Copy the
php.ini-production file to php.ini (Listing 7).

Create an Apache configuration file for Drupal /usr/
local/etc/apache22/Includes/drupal.conf and add the
following (Listing 8). Add PHP support to /usr/local/etc/
apache22/mime.types (Listing 9). Create the error log file
for Drupal (Listing 10). Copy the skeleton my.cnf-medium
file to /var/db/mysql/my.cnf (Listing 11). Start MySQL and
secure the MySQL root password: (Listing 12). Create the
MySQL database drupal6 (Listing 13).

Set the privileges and drupal MySQL password to
!1gH87i-LL34 for database drupal6 (Listing 14/15).

Stage 4
 – Install and configure Drupal
Install Drupal and supporting modules (Listing 16). Copy
the Drupal settings file across (Listing 17). Start Apache
(Listing 18).

Install Drupal via web interface – point your browser at
the IP address set in hosts in Listing 2 (Figure 3/4/5/6/7).

Add settings to rc.conf so daemons start on reboot
(Listing 19)

Next article
In Part 2, we will look at setting up templates, adding
content and further configuring extending the site
functionality. Now is a good time to secure / fine tune
the configuration further and get to know the Drupal 6
interface.

Listing 19. Add these settings to rc.conf

Added for Drupal support

sendmail_enable="NONE"

apache22_enable="YES"

mysql_enable="YES"

Table 1. Files modi�ed during install

Check list of �les modi�ed
/usr/etc/hosts

/usr/etc/rc.conf

/usr/local/etc/apache22/httpd.conf

/usr/local/etc/apache22/mime.types

/usr/local/etc/apache22/Includes/drupal.conf

/usr/local/etc/php.ini

/var/db/mysql/my.cnf

/usr/local/www/drupal6/sites/default/settings.php

Table 2. Some high-pro�le Drupal websites

Drupal Websites
UK government national data data.gov.uk

The Economist economist.com

The Mayor of London london.gov.uk

MTV UK mtv.co.uk

Sony Music musicbox.sonybmg.com

The New York State Senate nysenate.gov

The New Republic tnr.com

Ubuntu Linux ubuntu.com

The World Food Program wfp.org

The US Whitehouse whitehouse.gov

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood. A passio-
nate convert to *BSD, he stubbornly refuses to shave off his be-
ard under any circumstances. Fortunately, his wife understands
him (she was working as a System/36 operator when they �rst
met). The technological passions of their daughter and numero-
us pets are still to be revealed.

http://www.geniodata.com/bsdi.html

10/2010 12

HOW TO’S

Traffic inside VPN tunnels is usually encrypted and
authenticated to provide security equivalent to that
provided by leased lines, but at a fraction the cost.

A tunnel is created by encapsulating a network protocol
(e.g. IP) within another network protocol, operating at the
same layer of the OSI model (e.g. IP, ICMP) or at a higher
layer (e.g. ESP, TLS).

VPNs are becoming increasingly popular, as they
allow companies to join the LANs of their branches or
subsidiaries into a single private network (site-to-site
VPNs) or to provide mobile employees, such as sales
people, access to their corporate network from outside the
premises (remote-access VPNs), thus making accessing
and sharing internal information much easier.

Though most often associated with Ipsec (http://
www.kernel-panic.it/openbsd/vpn/vpn2.html), VPNs are
a rather broad concept and can be implemented using
a number of different tunneling protocols (L2TP, MPLS,
PPTP, TLS, among others). In particular, in this document,
we will take a look at the three most popular VPN
implementations supported by OpenBSD:

IPsec
http://www.kernel-panic.it/openbsd/vpn/vpn2.html – a
suite of standard protocols, defined in various RFCs
(see Appendix), that operate at the network layer of the
OSI model; OpenBSD (http://www.openbsd.org/) natively

supports IPsec protocols and provides specific tools and
daemons to manage IPsec VPNs;

OpenVPN
http://www.openvpn.net/ – an SSL-based VPN solution,
operating at the application layer and probably the
strongest contender for IPsec, thanks to its robustness,
ease of use and portability;

OpenSSH
http://www.openssh.org/ – since release 4.3, OpenSSH
supports the tunneling of arbitrary network packets over
a connection between an OpenSSH client and server,
as a true VPN (see [OBSD39] http://www.openbsd.com/
39.html).

Besides the inherent differences in cryptographic
algorithms and authentication mechanims, these three
VPN implementations differ under several aspects;
each one has its own advantages and drawbacks and
the choice among them must consider not only the ease
of installation and administration, but also factors like
bandwidth, reliability and scalability. The following are the
most relevant differences:

• IPsec runs in kernel space, tightly integrated with the
host TCP/IP stack, while OpenVPN and OpenSSH
are user-space daemons. The in-kernel architecture

Building VPNs

A VPN is a network made up of multiple private networks
situated at different locations, linked together using secure
tunnels over a public (insecure) network, typically the
Internet.

on OpenBSD

What you will learn…
• A good knowledge of OpenBSD administration

What you should know…
• How to build building VPNs on OpenBSD

http://www.freebsdmall.com

10/2010 14

HOW TO’S

has the advantage of being faster and more efficient,
but may increase the impact of possible vulnerabilities
and programming errors on the whole system;

• OpenVPN and OpenSSH have a slightly higher
overhead due to the encapsulation of the payload
within higher layers of the OSI model;

• IPsec works at the network layer of the OSI model,
while both OpenVPN and OpenSSH can operate in
either bridging mode (layer 2) or routing mode (layer 3)
(please refer to [OVPN-FAQ] http://www.openvpn.net/
index.php/open-source/faq.html#bridge2 for a brief
overview of bridging vs. routing); to tunnel ethernet traffic
over IPsec, you need the additional layer of tunneling
provided by the gif(4) (http://www.openbsd.org/cgi-bin/
man.cgi?query=gif&sektion=4) interface;

• IPsec interoperability comes from its being
a standard, but different vendors' implementations
may not be entirely compatible; the interoperability of
OpenVPN and OpenSSH, instead, is ensured by their
high portability across the most popular OSes.

Despite the many differences, OpenVPN has some
common ground with IPsec, since, as stated in [OVPN-
SEC] (http://www.openvpn.net/index.php/open-source/
faq.html#security-issues), OpenVPN's security model
is heavily based on the IPSec ESP protocol for secure
tunnel transport over UDP.

This document assumes that you are familiar with
OpenBSD, since it won't cover topics like base system
configuration, packages/ports installation or Packet Filter
syntax.

Ipsec overview
IPsec configuration on OpenBSD is a pretty easy and
straightforward process, especially compared to most
other implementations; nevertheless, IPsec is a rather
complicated beast and a good working knowledge of its
protocols and internals is essential to configure it and get it to

work properly. Therefore, before beginning the configuration,
let's take a brief tour of the IPsec protocols and features.

IPsec (IP security) is a suite of standard protocols
designed to provide interoperable, high quality,
cryptographically-based security [RFC4301] (http://
tools.ietf.org/html/rfc4301) for protecting communications
over IPv4 and IPv6 networks. The main security services
offered by IPsec are:

• Confidentiality – traffic is encrypted to ensure that
only the legitimate receiver is able to access the data
transmitted.

• Connectionless integrity – ensures that no
modifications were made to the data while in transit
across the network.

• Data origin authentication – the receiver is able to verify
that data actually originates from the claimed source.

• Detection and rejection of replays – duplicate IP
datagrams are detected and processed only once.

These security services are provided at the IP layer
(layer 3 of the OSI model), thus protecting all protocols
that may be carried over IP, including IP itself.

IPsec protocols
Most of IPsec security services are provided using two
traffic security protocols:

• AH (Authentication Header) – defined in [RFC4302]
(http://tools.ietf.org/html/rfc4302), AH is used
to provide connectionless integrity, data origin
authentication and optional (at the discretion of the
receiver) anti-replay protection for IP datagrams.

• ESP (Encapsulating Security Payload) – defined in
[RFC4303] (http://tools.ietf.org/html/rfc4302), ESP
offers the same set of services as AH (data origin
authentication, connectionless integrity and anti-
replay), plus confidentiality.

Figure 1. ESP and AH – transport mode

��������

������ ������

����������������������������

��������� ������������ �������������
����������

��������������
���������������

���������
�������������

Figure 2. Basic network topology of the VPN

��������

������ ���� ���� ������

�������������������������
�����

���������
�����

��������������������� ���������� �������������
����������

���������
�������������

��������� ���������

Building VPNs on OpenBSD

www.bsdmag.org 15

ESP is by far the most popular of the two protocols, since
it provides confidentiality by encrypting network traffic,
thus protecting transmitted data from passive attacks.
On the other hand, AH provides stronger authentication
than ESP as it protects part of the outer IP header as
well as the next level protocol data, while ESP only
protects the inner (encapsulated) IP header; however,
this feature, in addition to not being of great use in most
cases, also violates the modularization of the protocol
stack (see [SCHNEIER] http://www.schneier.com/
paper-ipsec.pdf, where the AH protocol is proposed for
complete elimination).

AH and ESP may also be applied in combination with
each other to exploit the strengths of both protocols but, in
most real-world scenarios, ESP alone is enough.

Both ESP and AH support two modes of operation:

• transport mode – IPsec protects only the payload of
the IP packet (usually the transport layer data, hence
its name), leaving the IP header, and thus routing,
unchanged; transport mode can be used only for
host-to-host communication; (see Figure 1)

• tunnel mode – the entire IP packet is encrypted and/
or authenticated and then encapsulated into a new
IP packet; tunnel mode is typically used to connect
either two remote networks or a host and a network;
it is more flexible than transport mode, but imposes
more bandwidth overhead; (see Figure 2)

The flexibility of tunnel mode allows it to fully supersede
the functionality of transport mode, at the reasonable
expense of a slightly higher bandwidth overhead. As
a consequence, transport mode is rarely used in real-
world VPNs and, just like AH, [SCHNEIER] (http://
www.schneier.com/paper-ipsec.pdf) suggests that
transport mode be eliminated altogether, with the
advantage of significantly reducing IPsec complexity.

In a nutshell, while ESP and tunnel mode are by far
the most prevalent choice, AH and transport mode can
be considered the black sheeps of the IPsec protocol
family!

SA, SPI, SPD and other acronyms
To actually establish the VPN, the IPsec protocols
require that some state data be shared between the
VPN endpoints, such as the cryptographic algorithms
for encryption and authentication, the keys used as input
to the cryptographic algorithms, the current sequence
number, the antireplay window and so on.

These data are held in a data structure called a Security
Association (SA); SAs are created by a specific protocol,
IKEv2 (defined in [RFC4306] http://tools.ietf.org/html/
rfc4306), which also has the responsibility of mutually
authenticating the two communicating parties, setting up
the encrypted channel for secure information exchange
(these steps are part of the so-called IKE phase 1) and
negotiating the shared secret from which cryptographic
keys are derived (IKE phase 2).

A Security Association applies to a single protocol (AH
or ESP) and to a single direction of traffic flow; therefore,
to secure typical, bi-directional communication between
two IPsec-enabled systems, a pair of SAs (one in each
direction) is required. IKE explicitly creates SA pairs in
recognition of this common usage requirement [RFC4301]
(http://tools.ietf.org/html/rfc4301#section-4.1).

SAs are collected in a Security Association Database
(SAD), where they are uniquely identified by the
combination of protocol (AH or ESP), destination address
and an arbitrary 32-bit value called the Security Parameter
Index (SPI). The SPI has the specific task of helping the
receiver to identify the SA under which an incoming
packet should be processed.

But how does IPsec decide which datagrams to send
through the VPN and which not? For instance, in a typical
site-to-site VPN scenario, the IPsec gateway will usually
tunnel and/or protect only traffic between the remote

Figure 3. ESP and AH – tunnel mode

��������

���������
�������������

������������

����

���������
��������������

���������
��������������

���������

�������������

����

������� �������

Listing 1. Adding the variables to the /etc/sysctl.conf

/etc/sysctl.conf

[...]

net.inet.esp.enable=1 # Enable the ESP IPsec

protocol

net.inet.ah.enable=1 # Enable the AH IPsec

protocol

net.inet.ip.forwarding=1 # Enable IP forwarding for

the host. Set it to '2' to

 # forward only IPsec

traffic

net.inet.ipcomp.enable=1 # Optional: compress IP

datagrams

10/2010 16

HOW TO’S

LANs, leaving all other traffic unaffected. Well, IPsec
makes such decisions based on policies, i.e. user-defined
rules stating which packets should be protected using
IPsec security services, which should be allowed to
bypass IPsec protection and which should be discarded.
IPsec policies are applied based on some specific fields
in the datagram headers, called selectors, which include:
source and destination addresses, Next Layer Protocol,
source and destination ports (if used by the next layer
protocol).

As with Security Associations, IPsec policies are held in
a database, called the Security Policy Database (SPD),
which must be consulted during the processing of all traffic
(inbound and outbound), including traffic not protected by
IPsec, that traverses the IPsec boundary.

The life of an IPsec packet
To recap, let's have a look at what the (brief) life of an
IPsec packet looks like; we will consider the most common
case: an ESP tunnel-mode VPN between two remote
networks (see picture above). The story begins when the
first gateway (GW1) receives an outbound packet from
a host (Host1) within its internal network and destined for
a host (Host2) on the remote network:

• the gateway first compares the datagram's selector
fields against the SPD to find the first matching policy;

• the policy may specify one of three possible
processing choices:
• DISCARD, the packet is not allowed to traverse

the IPsec boundary and is dropped;
• BYPASS, the packet is allowed to cross the IPsec

boundary without IPsec protection and will be
routed normally;

• PROTECT, the packet must be afforded IPsec
protection and the policy will point to zero or more
SAs in the SAD;

• in the present case, the gateway has a policy
specifying that the datagram must be encapsulated
with tunnel-mode ESP and sent to GW2;

• if no SA exists for this policy, IKE will be invoked to
negotiate the SAs with the appropriate peer;

• the first matching SA(s) will be applied, providing the
requested security services to the datagram;

• the IP datagram will be encapsulated in ESP and
the outer IP header will have the addresses of GW1
and GW2 as source and destination addresses
respectively;

After a brief walk around the Internet, the encapsulated
packet hits the second gateway (GW2):

• the datagram is checked to see whether it contains
an IPsec header; if not, the datagram is forwarded
normally;

• using the destination address, the SPI and the type of
IPsec header of the incoming datagram, the gateway
determines which SA to use; if no matching SA is
found, the packet is dropped;

• if antireplay is activated, the sequence number is
checked for validity;

• the packet is decrypted and/or authenticated as
specified by the SA;

• the gateway locates the SPD entry that applies to the
datagram based on its selectors and verifies that the
SA(s) applied in the previous steps match with SA(s)
specified by the policy;

• the packet is decapsulated and forwarded to next hop
or to the appropriate transport protocol.

Listing 2. The �rst step in setting up the PKI is the creation of the root
CA certi�cate and private key on the signing machine using openssl

CA# openssl req -x509 -days 365 -newkey rsa:1024 \

> -keyout /etc/ssl/private/ca.key \

> -out /etc/ssl/ca.crt

Generating a 1024 bit RSA private key

..++++++

......++++++

writing new private key to '/etc/ssl/private/ca.key'

Enter PEM pass phrase: <passphrase>

Verifying – Enter PEM pass phrase: <passphrase>

You are about to be asked to enter information that

will be incorporated

into your certificate request.

What you are about to enter is what is called a

Distinguished Name or a DN.

There are quite a few fields but you can leave some

blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []: IT

State or Province Name (full name) []: Italy

Locality Name (eg, city) []: Milan

Organization Name (eg, company) []: Kernel Panic Inc.

Organizational Unit Name (eg, section) []: IPsec

Common Name (eg, fully qualified host name) []:

CA.kernel-panic.it

Email Address []: danix@kernel-panic.it

CA#

http://www.bsdmag.org

10/2010 18

HOW TO’S

Ipsec on OpenBSD
Now that we have an adequate working knowledge of the
IPsec architecture and protocols, we are finally ready to
move from theory to practice and start having some fun
with OpenBSD! OpenBSD ships by default with full IPsec
support in the stock kernel and provides a set of user-space
daemons and tools for managing IPsec configuration,
dynamic key exchange and high availability; and the great
thing is that, as you'll see, setting up an IPsec VPN on
OpenBSD is an incredibly simple and fast task, especially
compared to most other IPsec implementations out there.

But before proceeding to edit configuration files and
run system commands, let's take a brief look at the basic
network topology of the VPN that we are going to set up
in this document; it's a very simple site-to-site VPN, with
a couple of multi-homed security gateways (VPN1 and
VPN2) linking two remote private networks (172.16.0.0/
24 and 192.168.0.0/24) see Figure 3.

In this chapter, we will set up the VPN using IPsec: to be
more precise, we will configure it in tunnel mode (the only

option for network-to-network VPNs) and use the ESP
protocol in order to encrypt the VPN traffic as it traverses
the Internet; we will also consider the case of redundant
IPsec gateways with carp(4) (http://www.openbsd.org/
cgi-bin/man.cgi?query=carp&sektion=4). Then, in the
next chapters, we will see how the same VPN can be
implemented using alternative solutions, in particular
OpenVPN and OpenSSH.

Preliminary steps
Before proceeding to configure IPsec, we have to perform
a few preliminary steps to make sure the systems are
correctly set up for IPsec to work properly. The IPsec
protocols are enabled or disabled in the OS's TCP/IP stack
via two sysctl(3) (http://www.openbsd.org/cgi-bin/man.cgi?
query=sysctl&sektion=3) variables: net.inet.esp.enable and
net.inet.ah.enable, both enabled by default; you can check
this by running the sysctl(8) (http://www.openbsd.org/cgi-
bin/man.cgi?query=sysctl&sektion=8) command:

sysctl net.inet.esp.enable

net.inet.esp.enable=1

sysctl net.inet.ah.enable

net.inet.ah.enable=1

Since our VPN gateways will have to perform traffic routing,
we also need to enable IP forwarding, which is turned
off by default. This is done, again, with sysctl(8) (http://
www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=
8), by setting the value of the net.inet.ip.forwarding variable
to 1 if you want any kind of traffic to be forwarded or 2 if you
want to restrict forwarding to only IPsec-processed traffic:

sysctl net.inet.ip.forwarding=1

net.inet.ip.forwarding: 0 -> 1

Optionally, you may also want to enable the IP Payload
Compression Protocol (IPComp) to reduce the size of
IP datagrams for higher VPN throughput; however, bear
in mind that the reduction of bandwidth usage comes at
the expense of a higher computational overhead (see
[RFC3173] http://tools.ietf.org/html/rfc3173 for further
details):

sysctl net.inet.ipcomp.enable=1

net.inet.ipcomp.enable: 0 -> 1

To make these settings permanent across reboots, add
the following variables to the /etc/sysctl.conf(5) (http://
www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&s
ektion=5) file: see Listing 1.

Listing 3. The creation of a Certi�cate Signing Request (CSR) on
each of the IKE peers

VPN1# openssl req -new -key /etc/isakmpd/private/

local.key \

> -out /etc/isakmpd/private/1.2.3.4.csr

You are about to be asked to enter information that

will be incorporated

into your certificate request.

What you are about to enter is what is called a

Distinguished Name or a DN.

There are quite a few fields but you can leave some

blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []: IT

State or Province Name (full name) []: Italy

Locality Name (eg, city) []: Milan

Organization Name (eg, company) []: Kernel Panic Inc.

Organizational Unit Name (eg, section) []: IPsec

Common Name (eg, fully qualified host name) []: 1.2.3.4

Email Address []: danix@kernel-panic.it

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []: <enter>

An optional company name []: <enter>

VPN1#

Building VPNs on OpenBSD

www.bsdmag.org 19

Finally, we need to bring up the enc(4) (http://
www.openbsd.org/cgi-bin/man.cgi?query=enc&sektion=4)
virtual network interface. This interface allows you to inspect
outgoing IPsec traffic before it is encapsulated and incoming
IPsec traffic after it is decapsulated; this is primarily useful for
filtering IPsec traffic with PF and for debugging purposes.

ifconfig enc0 up

To make the system automatically bring up the enc(4)
(http://www.openbsd.org/cgi-bin/man.cgi?query=enc&s
ektion=4) interface at boot, create the /etc/hostname.enc0
(http://www.openbsd.org/cgi-bin/man.cgi?query=hostna
me.if&sektion=5) configuration file:

/etc/hostname.enc0

up

Setting up the PKI
OpenBSD's IKE key management daemon, isakmpd(8)
(http://www.openbsd.org/cgi-bin/man.cgi?query=isakmpd
&apropos=0&sektion=8), relies on public key certificates
for authentication and therefore requires that you first set
up a Public Key Infrastructure (PKI) for managing digital
certificates.

The first step in setting up the PKI is the creation of the
root CA certificate (/etc/ssl/ca.crt) and private key (/etc/
ssl/private/ca.key) on the signing machine (which doesn't
have to be necessarily one of the VPN gateways) using
openssl(1) (http://www.openbsd.org/cgi-bin/man.cgi?query
=openssl&sektion=1); e.g.: see Listing 2.

The next step is the creation of a Certificate Signing
Request (CSR) on each of the IKE peers; for instance, the
following command will generate the CSR (/etc/isakmpd/
private/1.2.3.4.csr) for the VPN1 machine (the IP address,
in this case 1.2.3.4, is used as unique ID): see Listing 3.

Next, the CSRs must be sent to the CA, which will
generate the signed certificates out of the certificate
requests. For instance, assuming the CSR file is in the
current directory: see Listing 4.

Finally, you need to copy the newly-generated
certificates (the files ending in .crt) to the respective
machines in the /etc/isakmpd/certs/ directory, as well as
the CA certificate (/etc/ssl/ca.crt) in /etc/isakmpd/ca/.

Con�guration
So we have conveniently set up the system for IPsec use
and generated all the required certificates for IKE peer
authentication; now we're finally ready to configure our
VPN connection. On OpenBSD, all the configuration for
IPsec takes place in a single file, /etc/ipsec.conf(5) (http://

www.openbsd.org/cgi-bin/man.cgi?query=ipsec.conf&s
ektion=5), which uses a very compact syntax, similar to
pf.conf(5) (http://www.openbsd.org/cgi-bin/man.cgi?query
=pf.conf&sektion=5), to define almost every characteristic
of the VPN; the basic format of the file is as follows:

• comment lines begin with a hash character (#) and
extend to the end of the line;

• rules may span across multiple lines using the
backslash character (\);

• network addresses can be specified in CIDR notation,
as symbolic host names, interface names, or interface
group names;

• to simplify the configuration file, macros can be used;
macro names must start with a letter, may contain
letters, numbers and underscores and must not be
reserved words;

• certain parameters (such as IP addresses) can be
expressed as lists; lists are comma-separated and
enclosed in curly braces.

Listing 4. CSRs must be sent to the CA, assuming the CSR �le is in
the current directory

CA# env CERTIP=1.2.3.4 openssl x509 -req \

> -days 365 -in 1.2.3.4.csr -out 1.2.3.4.crt \

> -CA /etc/ssl/ca.crt -CAkey /etc/ssl/private/ca.key

\

> -CAcreateserial -extfile /etc/ssl/x509v3.cnf -

extensions x509v3_IPAddr

Signature ok

subject=/C=IT/ST=Italy/L=Milan/O=Kernel Panic Inc./

OU=IPsec/CN=1.2.3.4/emailAddress=d

anix@kernel-panic.it

Getting CA Private Key

Enter pass phrase for /etc/ssl/private/ca.key:

<passphrase>

CA#

Listing 5. The syntax

ike [mode] [encap] [tmode] [proto protocol] \

 from src [port sport] [(srcnat)] to dst [port

dport] \

 [local localip] [peer remote] \

 [mode auth algorithm enc algorithm group group] \

 [quick auth algorithm enc algorithm group group] \

 [srcid string] [dstid string] \

 [psk string] [tag string]

10/2010 20

HOW TO’S Building VPNs on OpenBSD

www.bsdmag.org 21

There are different types of ipsec.conf(5) (http://
www.openbsd.org/cgi-bin/man.cgi?query=ipsec.con
f&sektion=5) rules, depending on whether you want
IPsec flows and SAs to be set up automatically (using
isakmpd(8) http://www.kernel-panic.it/cgi-bin/man.cgi?
query=isakmpd&sektion=8) or manually; we will only
consider the former case (which is usually what you
want), so please refer to the documentation (http://
www.openbsd.org/cgi-bin/man.cgi?query=ipsec.conf&se
ktion=5) for further details on manual setups. The syntax
is as follows: see Listing 5.

Though it may look rather complex at first, actual rules
are usually very short and simple because most of the
parameters can be omitted, in which case the default
values are used. But let's examine the rule syntax in
detail:

• ike [mode] [encap] [tmode] – the ike keyword
specifies that isakmpd(8) (http://www.kernel-panic.it/
cgi-bin/man.cgi?query=isakmpd&sektion=8) must
be used to automatically establish the Security
Associations for this flow; mode can be either active
(isakmpd(8) (http://www.kernel-panic.it/cgi-bin/man
.cgi?query=isakmpd&sektion=8) will immediately
start negotiation of this tunnel), passive (to wait for
an incoming request from the remote peer to start
negotiation) or dynamic (to be used for hosts with
dynamic IP addresses) and defaults to active; encap

specifies the encapsulation protocol and can be
either esp (default) or ah; tmode is the transport mode to
use, i.e. tunnel (default) or transport.

• proto protocol – Restrict the flow to a specific IP
protocol (e.g. TCP, UDP, ICMP); by default all
protocols are allowed.

• from src [port sport] [(srcnat)] to dst [port dport] –
Specify the source and destination addresses of
the packets that this rule applies to; you may also
specify source and/or destination ports, but only
in conjunction with the TCP or UDP protocols. The
srcnat parameter can be used to specify the actual
source address in outgoing NAT/BINAT scenarios.

• local localip peer remote – Specify the local and
remote endpoints of the VPN; the local endpoint is
required only if the machine has multiple addresses;
the remote endpoint can be omitted if it corresponds
to the dst parameter.

• mode auth algorithm enc algorithm group group
– Specify the mode (main or aggressive) and
cryptographic transforms to be used for IKE phase 1
negotiation; please refer to the documentation (http:/
/www.openbsd.org/cgi-bin/man.cgi?query=ipsec.con
f&sektion=5) for a complete list of the possible values
and their defaults.

• quick auth algorithm enc algorithm group group
• Specify the cryptographic transforms to be used

for IKE phase 2 negotiation; please refer to the

Listing 7. The con�guration �les for the site-to-site VPN we’re
setting up

/etc/ipsec.conf

Macros

ext_if = "rl0" #

External interface (5.6.7.8)

local_nets = "{192.168.0.0/24, 192.168.1.0/24}" #

Local private networks

remote_gw = "1.2.3.4" #

Remote IPsec gateway

remote_net = "172.16.0.0/24" #

Remote private network

Set up the VPN between the gateway machines

ike esp from $ext_if to $remote_gw

Between local gateway and remote network

ike passive esp from $ext_if to $remote_net peer

$remote_gw

Between the networks

ike esp from $local_nets to $remote_net peer $remote_gw

Listing 6. The con�guration �les for the site-to-site VPN we’re
setting up

/etc/ipsec.conf

Macros

ext_if = "rl0" #

External interface (1.2.3.4)

local_net = "172.16.0.0/24" #

Local private network

remote_gw = "5.6.7.8" #

Remote IPsec gateway

remote_nets = "{192.168.0.0/24, 192.168.1.0/24}" #

Remote private networks

Set up the VPN between the gateway machines

ike esp from $ext_if to $remote_gw

Between local gateway and remote networks

ike esp from $ext_if to $remote_nets peer $remote_gw

Between the networks

ike esp from $local_net to $remote_nets peer $remote_gw

10/2010 20

HOW TO’S Building VPNs on OpenBSD

www.bsdmag.org 21

documentation (http://www.openbsd.org/cgi-bin/man
.cgi?query=ipsec.conf&sektion=5) for a complete list
of the possible values and their defaults.

• srcid string dstid string – Define the unique ID that
isakmpd(8) (http://www.kernel-panic.it/cgi-bin/man.cgi?
query=isakmpd&sektion=8) will use as the identity of
the local (srcid) and remote (dstid) peer; if omitted, the
IP address is used.

• psk string – Use a pre-shared key for authentication
instead of isakmpd(8) (http://www.kernel-panic.it/cgi-bin/
man.cgi?query=isakmpd&sektion=8).

• tag string – Add a pf(4) (http://www.openbsd.org/
cgi-bin/man.cgi?query=pf&sektion=4) tag to IPsec
packets matching this rule.

So let's write the configuration files for the site-to-site
VPN we're setting up; as you'll see, it's a really trivial
task and a few rules will do. On the VPN1 host, the /etc/
ipsec.conf(5) (http://www.openbsd.org/cgi-bin/man.cgi?
query=ipsec.conf&sektion=5) file will look like this: see
Listing 6 and on VPN2: see Listing 7.

Now we are ready to start the isakmpd(8) (http://
www.kernel-panic.it/cgi-bin/man.cgi?query=isakmpd&
sektion=8) daemon on both gateways; we will make it run
in the foreground (-d option) in order to easily notice any
errors:

isakmpd -K -d

Then, again on both gateways, we can parse ipsec.conf(5)
(http://www.openbsd.org/cgi-bin/man.cgi?query=ipsec.
conf&sektion=5) rules (-n option of ipsecctl(8) http://
www.openbsd.org/cgi-bin/man.cgi?query=ipsecctl&
sektion=8) and, if no errors show up, load them:

ipsecctl -n -f /etc/ipsec.conf

ipsecctl -f /etc/ipsec.conf

You can check that IPsec flows and SAs have
been correctly set up by running ipsecctl(8) (http://
www.openbsd.org/cgi-bin/man.cgi?query=ipsecctl&
sektion=8) with the -s all option; for example: see Listing 8.

Well, since everything seems to be working fine, we can
configure the system to automatically start the VPN at boot
by adding the following variables in /etc/rc.conf.local(8)
(http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf.l
ocal&sektion=8) on both security gateways:

/etc/rc.conf.local

isakmpd_flags="-K" # Avoid keynote(4) policy checking

ipsec=YES # Load ipsec.conf(5) rules

Listing 8. You can check that IPsec �ows and SAs have been
correctly set up by running ipsecctl(8)

VPN1# ipsecctl -s all

FLOWS:

flow esp in from 192.168.0.0/24 to 1.2.3.4 peer 5.6.7.8

srcid 1.2.3.4/32 dstid 5.6.7.8/32

type use

flow esp out from 1.2.3.4 to 192.168.0.0/24 peer 5.6.7.8

srcid 1.2.3.4/32 dstid 5.6.7.8/32

type require

flow esp in from 192.168.1.0/24 to 1.2.3.4 peer 5.6.7.8

srcid 1.2.3.4/32 dstid 5.6.7.8/32

type use

flow esp out from 1.2.3.4 to 192.168.1.0/24 peer 5.6.7.8

srcid 1.2.3.4/32 dstid 5.6.7.8/32

type require

[...]

SAD:

esp tunnel from 5.6.7.8 to 1.2.3.4 spi 0x027fa231 auth

hmac-sha2-256 enc aes

esp tunnel from 1.2.3.4 to 5.6.7.8 spi 0x13ebc203 auth

hmac-sha2-256 enc aes

esp tunnel from 1.2.3.4 to 5.6.7.8 spi 0x25da85ac auth

hmac-sha2-256 enc aes

esp tunnel from 5.6.7.8 to 1.2.3.4 spi 0x891aa39b auth

hmac-sha2-256 enc aes

[...]

VPN1#

Listing 9. The sample con�guration �le

/etc/sasyncd.conf

carp(4) interface to track state changes on

interface carp0

Interface group to use to suppress carp(4)

preemption during boot

group carp

sasyncd(8) peer IP address or hostname. Multiple

'peer' statements are allowed

peer 172.16.0.253

Shared AES key used to encrypt messages between

sasyncd(8) hosts. It can be

generated with the openssl(1) command 'openssl rand

-hex 32'

sharedkey 0x115c413529ba5ac96b208d83a50473b3e6ade60e66

c59a10a944ad3d273148dd

10/2010 22

HOW TO’S Building VPNs on OpenBSD

www.bsdmag.org 23

Packet �ltering
IPsec traffic can be filtered on the enc(4) (http://
www.openbsd.org/cgi-bin/man.cgi?query=enc&sektion=4)
interface, where it appears unencrypted before
encapsualtion and after decapsulation. The following are
the main points to keep in mind for filtering IPsec traffic:

• IPsec protocols (http://www.kernel-panic.it/openbsd/
vpn/vpn2.html#vpn-2.1) (AH and/or ESP) must be
explicitely allowed on the external interface; e.g.:

Allow ESP encapsulated IPsec traffic on the external

interface

pass in on $ext_if proto esp from $remote_gw to $ext_if

pass out on $ext_if proto esp from $ext_if to $remote_gw

• isakmpd(8) (http://www.kernel-panic.it/cgi-bin/man.cgi?
query=isakmpd&sektion=8) requires that UDP traffic
on ports 500 (isakmp) and 4500 (ipsec-nat-t) be
allowed on the external interface; e.g.:

Allow isakmpd(8) traffic on the external interface

pass in on $ext_if proto udp from $remote_gw to $ext_if \

 port {isakmp, ipsec-nat-t}

pass out on $ext_if proto udp from $ext_if to $remote_gw \

 port {isakmp, ipsec-nat-t}

• if the VPN is in tunnel mode, IP-in-IP traffic between
the two gateways must be allowed on the enc(4) (http://
www.openbsd.org/cgi-bin/man.cgi?query=enc&sekti
on=4) interface: e.g.:

Allow IP-in-IP traffic between the gateways on the enc(4)

interface

pass in on enc0 proto ipencap from $remote_gw to $ext_if

keep state \

 (if-bound)

pass out on enc0 proto ipencap from $ext_if to $remote_gw

keep state \

 (if-bound)

• as stated before, IPsec traffic filtering is done on the
enc(4) (http://www.openbsd.org/cgi-bin/man.cgi?query=
enc&sektion=4) interface, where it appears unencrypted.
State on the enc(4) (http://www.openbsd.org/cgi-bin/
man.cgi?query=enc&sektion=4) interface should be
interface bound (http://www.openbsd.org/faq/pf/
options.html#state-policy); e.g.:

Listing 10. Initalizing parameters in the vars �le with your
organization’s data to avoid being prompted for the same
information every time you create a new certi�cate

/usr/local/share/examples/openvpn/easy-rsa/2.0/vars

export EASY_RSA="'pwd'"

export OPENSSL="openssl"

export PKCS11TOOL="pkcs11-tool"

export GREP="grep"

export KEY_CONFIG="$EASY_RSA/openssl.cnf"

export KEY_DIR="$EASY_RSA/keys"

echo NOTE: If you run ./clean-all, I will be doing a

rm -rf on $KEY_DIR

export PKCS11_MODULE_PATH="dummy"

export PKCS11_PIN="dummy"

export KEY_SIZE=1024

export CA_EXPIRE=3650

export KEY_EXPIRE=3650

export KEY_COUNTRY="IT"

export KEY_PROVINCE="Italy"

export KEY_CITY="Milan"

export KEY_ORG="Kernel Panic Inc."

export KEY_EMAIL="danix@kernel-panic.it"

Listing 11. Initalizing the PKI by building the Diffie-Hellman
parameters and creating the root CA certi�cate and key

cd /usr/local/share/examples/openvpn/easy-rsa/2.0/

. ./vars

NOTE: when you run ./clean-all, I will be doing a rm

-rf on /usr/local/share/example/

opevvpn/easy-rsa/2.0/keys

./clean-all

./build-dh

Generating DH parameters, 1024 bit long safe prime,

generator 2

This is going to take a long time

[...]

./pkitool --initca

Using CA Common Name: Kernel Panic Inc. CA

Generating a 1024 bit RSA private key

.........................++++++

......++++++

writing new private key to 'ca.key'

#

10/2010 22

HOW TO’S Building VPNs on OpenBSD

www.bsdmag.org 23

Filter unencrypted VPN traffic on the enc(4) interface

pass in on enc0 from $remote_nets to $int_if:network keep

state (if-bound)

pass out on enc0 from $int_if:network to $remote_nets keep

state (if-bound)

Redundant VPNs with sasyncd(8)
One of the most interesting features of OpenBSD's
implementation of the IPsec protocol is the possibility
to set up multiple VPN gateways in a redundant
configuration, allowing for transparent failover of VPN
connections without any loss of connectivity.

Typically, in OpenBSD, redundancy at the network level is
achieved through the carp(4) (http://www.openbsd.org/cgi-
bin/man.cgi?query=carp&sektion=4) protocol, which allows
multiple hosts on the same local network to share a common
IP address. Redundancy at the logical VPN layer, instead, is
provided by the sasyncd(8) (http://www.openbsd.org/cgi-bin/
man.cgi?query=sasyncd&sektion=8) daemon, which allows
the synchronization of IPsec SA and SPD information
between multiple IPsec gateways.

We have already covered the carp(4) (http://
www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion
=4) protocol in a previous document (http://www.kernel-
panic.it/openbsd/carp/index.html) about redundant
firewalls, so we won't come back to this topic now;
therefore, I assume that you already have a working
carp(4) (http://www.openbsd.org/cgi-bin/man.cgi?query=
carp&sektion=4) setup and that you have modified your
configuration accordingly (in particular the ipsec.conf(5)
(http://www.openbsd.org/cgi-bin/man.cgi?query=ipsec.c
onf&sektion=5) and pf.conf(5) (http://www.openbsd.org/
cgi-bin/man.cgi?query=pf.conf&sektion=5) files).

Please note that, as stated in the documentation
(http://www.openbsd.org/cgi-bin/man.cgi?query=sasyn
cd&sektion=8), for SAs with replay protection enabled,
such as those created by isakmpd(8) (http://www.kernel-
panic.it/cgi-bin/man.cgi?query=isakmpd&sektion=8), the
sasyncd(8) (http://www.openbsd.org/cgi-bin/man.cgi?quer
y=sasyncd&sektion=8) hosts must have pfsync(4) (http://
www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sekt
ion=4) enabled to synchronize the in-kernel SA replay

Listing 12. Creating the certi�cate and key for the VPN server

./pkitool --server vpn1.kernel-panic.it

Generating a 1024 bit RSA private key

........++++++

...++++++

writing new private key to 'vpn1.kernel-panic.it.key'

Using configuration from /usr/local/share/examples/

openvpn/easy-rsa/2.0/openssl.cnf

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

countryName :PRINTABLE:'IT'

stateOrProvinceName :PRINTABLE:'Italy'

localityName :PRINTABLE:'Milan'

organizationName :PRINTABLE:'Kernel Panic Inc.'

commonName :PRINTABLE:'vpn1.kernel-

panic.it'

emailAddress :IA5STRING:'danix@kernel-

panic.it'

Certificate is to be certified until Jun 2 08:41:51

2019 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

#

Listing 13. Using the pkitool utility to generate as many client
certi�cates as we need

./pkitool vpn2.kernel-panic.it

Generating a 1024 bit RSA private key

...................++++++

..++++++

writing new private key to 'vpn2.kernel-panic.it.key'

Using configuration from /usr/local/share/examples/

openvpn/easy-rsa/2.0/openssl.cnf

Check that the request matches the signature

Signature ok

The Subject's Distinguished Name is as follows

countryName :PRINTABLE:'IT'

stateOrProvinceName :PRINTABLE:'Italy'

localityName :PRINTABLE:'Milan'

organizationName :PRINTABLE:'Kernel Panic Inc.'

commonName :PRINTABLE:'vpn2.kernel-

panic.it'

emailAddress :IA5STRING:'danix@kernel-

panic.it'

Certificate is to be certified until Jun 2 08:47:25

2019 GMT (3650 days)

Write out database with 1 new entries

Data Base Updated

#

10/2010 24

HOW TO’S

counters (for a detailed discussion of the pfsync(4) (http://
www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektio
n=4) protocol, please refer to [CARP] http://www.kernel-
panic.it/openbsd/carp/carp5.html).

The sasyncd(8) (http://www.openbsd.org/cgi-bin/man.
cgi?query=sasyncd&sektion=8) daemon is configured
through the /etc/sasyncd.conf(5) (http://www.openbsd.org/
cgi-bin/man.cgi?query=sasyncd.conf&sektion=5) file,
which has a rather self-explanatory syntax; below
is a sample configuration file: see Listing 9. Since
sasyncd.conf(5) (http://www.openbsd.org/cgi-bin/man.cgi?

query=sasyncd.conf&sektion=5) contains the shared
secret key used to encrypt data between the sasyncd(8)
(http://www.openbsd.org/cgi-bin/man.cgi?query=sasyncd
&sektion=8) hosts, it should have restrictive permissions
(600) and belong to the root or _isakmpd user:

chown root /etc/sasyncd.conf

chmod 600 /etc/sasyncd.conf

Well, now we're ready to run the sasyncd(8) (http://
www.openbsd.org/cgi-bin/man.cgi?query=sasyncd&

Listing 14. The sample con�guration �le

/etc/openvpn/server.conf

Transport protocol to use. Available protocols are

udp and tcp-server

proto udp

TCP/UDP port to bind to

port 1194

Name of the tun(4) device to use

dev tun0

Uncomment to enable the management interface on port

1195. The password file

only contains the management password on a single

line.

#management 127.0.0.1 1195 /etc/openvpn/private/

mgmt.pwd

Path to the CA certificate

ca /etc/openvpn/ca.crt

Path to the server's certificate file

cert /etc/openvpn/vpn1.kernel-panic.it.crt

Path to the private key file

key /etc/openvpn/private/vpn1.kernel-panic.it.key

Path to the file containing the Diffe-Hellman

parameters

dh /etc/openvpn/dh1024.pem

Address range for the tun(4) interfaces

server 10.0.1.0 255.255.255.0

Uncomment to allow clients to dynamically change

address (useful for

road-warriors)

#float

Send periodic keepalive messages

keepalive 10 120

Use lzo compression to reduce network utilization

comp-lzo

User the OpenVPN daemon should run as

user _openvpn

Group the OpenVPN daemon should run as

group _openvpn

Make the server daemonize after initialization

daemon openvpn

Don't re-read key files upon receiving a SIGUSR1

signal

persist-key

Don't close and reopen the tun(4) device upon

receiving a SIGUSR1 signal

persist-tun

Add a route to the local network to the client's

routing table

push "route 172.16.0.0 255.255.255.0"

Add routes to the remote networks to the server's

routing table

route 192.168.0.0 255.255.255.0

route 192.168.1.0 255.255.255.0

Directory for client-specific configuration files

client-config-dir /etc/openvpn/ccd

Uncomment to periodically write status information

to the specified file

#status /var/log/openvpn-status.log

Uncomment to raise verbosity level for debugging

#verb 11

http://www.nycbsdcon.org

10/2010 26

HOW TO’S

sektion=8) daemon on the redundant gateways; but
first we need to restart isakmpd(8) (http://www.kernel-
panic.it /cgi-bin/man.cgi?query=isakmpd&sektion=8)
 with the -S option, which is mandatory on redundant
setups (remember to add it also to isakmpd _ flags in /etc/
rc.conf.local(8) http://www.openbsd.org/cgi-bin/man.cgi?
query=rc.conf.local&sektion=8):

pkill isakmpd

isakmpd -S -K

sasyncd

You can use ipsecctl(8) (http://www.openbsd.org/cgi-bin/
man.cgi?query=ipsecctl&sektion=8) to verify that SAs are
correctly synchronized between the IPsec gateways. Finally,
if everything is working fine, we only have to add the following
variable to the /etc/rc.conf.local(8) (http://www.openbsd.org/
cgi-bin/man.cgi?query=rc.conf.local&sektion=8) file to
automatically start sasyncd(8) (http://www.openbsd.org/cgi-
bin/man.cgi?query=sasyncd&sektion=8) on boot.

/etc/rc.conf.local

sasyncd_flags=""

Listing 15. Make sure that the con�guration matches the server con�guration

/etc/openvpn/client.conf

Act as a client

client

IP address (or hostname) and port of the OpenVPN

server. You may specify

multiple 'remote' options for redundancy.

remote 1.2.3.4 1194

Transport protocol to use. Available protocols are

udp and tcp-client

proto udp

Name of the tun(4) device to use

dev tun0

Uncomment if you connect through an HTTP proxy. The

authfile must contain

user and password on 2 lines. The authentication

type can be 'none', 'basic'

or 'ntlm'

#http-proxy proxy_addr proxy_port /etc/openvpn/

private/authfile auth_type

Make the server daemonize after initialization

daemon openvpn

Send periodic keepalive messages

keepalive 10 120

Don't bind to the local address and port, i.e. don't

wait for incoming

connections

nobind

User the OpenVPN daemon should run as

user _openvpn

Group the OpenVPN daemon should run as

group _openvpn

Directory to chroot to after initialization

chroot /var/empty

Don't re-read key files upon receiving a SIGUSR1

signal

persist-key

Don't close and reopen the tun(4) device upon

receiving a SIGUSR1 signal

persist-tun

Path to the CA certificate

ca /etc/openvpn/ca.crt

Path to the client's certificate file

cert /etc/openvpn/vpn2.kernel-panic.it.crt

Path to the private key file

key /etc/openvpn/private/vpn2.kernel-panic.it.key

Require that the peer certificate has the nsCertType

field set to 'server'

ns-cert-type server

Use lzo compression to reduce network utilization

comp-lzo

Uncomment to periodically write status information

to the specified file

#status /var/log/openvpn-status.log

Uncomment to raise verbosity level for debugging

#verb 11

Building VPNs on OpenBSD

www.bsdmag.org 27

Note
sasyncd(8) (http://www.openbsd.org/cgi-bin/man.cgi?query
=sasyncd&sektion=8) must be manually restarted every
time isakmpd(8) (http://www.kernel-panic.it/cgi-bin/man.cgi
?query=isakmpd&sektion=8) is restarted.

OpenVPN
OpenVPN (http://www.openvpn.net/) is a full-featured
SSL VPN which implements OSI layer 2 or 3 secure
network extension using the industry standard SSL/
TLS protocol, supports flexible client authentication
methods based on certificates, smart cards, and/or
username/password credentials, and allows user or
group-specific access control policies using firewall rules
applied to the VPN virtual interface [OVPN-HOWTO]
(http://www.openvpn.net/ index.php/open-source/
documentation/howto.html). Its cross-platform portability,
renown security and ease of use have made OpenVPN
one of the most popular VPN solutions today.

Unlike IPsec, OpenVPN is not tightly integrated into
the Operating System's kernel, but runs as a user-mode
daemon and communicates with the TCP/IP stack via
a tun(4) (http://www.openbsd.org/cgi-bin/man.cgi?query
=tun&sektion=4) pseudo-device. Please refer to [OVPN-
SEC2] (http://www.openvpn.net/index.php/open-source/
documentation/security-overview.html) for a detailed
overview of the OpenVPN protocol and security model.

In the next paragraphs, we will implement the same
VPN topology as in the previous chapter, though replacing
IPsec with OpenVPN. The VPN1 machine will act as the
server and wait for incoming connections from VPN2.

Installation and con�guration
OpenVPN installation simply requires adding
a couple of packages (http://www.openbsd.org/faq/
faq15.html#PkgInstall) on both server and client(s):

• lzo-xx.tgz

• openvpn-x.x.tgz

Setting up the PKI
The first step in configuring OpenVPN is to set up the
Public Key Infrastructure, by creating:

• a root CA certificate and private key;
• a certificate and private key for the OpenVPN server;
• a separate certificate and private key for each client

that will connect to the VPN.

The CA private key will be used to sign the server and
client certificates; this will allow the two VPN endpoints to
mutually authenticate each other simply by verifying the
CA signature of the other party's certificate, without having
to previously know any other certificate but their own (see
[OVPN-PKI] (http://www.openvpn.net/index.php/open-
source/documentation/howto.html#pki) for further details).

OpenVPN provides a set of scripts, located in /usr/local/
share/examples/openvpn/easy-rsa/2.0/, that greatly simplify the
process of creating and managing the PKI. These scripts
require, as a preliminary step, that you initalize a bunch of
parameters in the vars file with your organization's data, to
avoid being prompted for the same information every time
you create a new certificate: see Listing 10.

Now, after sourcing the vars file, you can initialize
the PKI by building the Diffie-Hellman parameters and
creating the root CA certificate and key: see Listing 11.

The next step is creating the certificate and key for the
VPN server: see Listing 12.

Next, we will use the pkitool utility to generate as many
client certificates as we need: see Listing 13.

Listing 16. Creating and con�guring the tun(4) network device
and setting up the appropriate routes to the remote network(s)
and hosts

VPN1# ifconfig tun0 create

VPN1# ifconfig tun0 10.0.0.1 10.0.0.2 netmask 0xfffffffc

VPN1# route add 192.168.0.0/24 10.0.0.2

VPN1# route add 192.168.1.0/24 10.0.0.2

VPN2# ifconfig tun0 create

VPN2# ifconfig tun0 10.0.0.2 10.0.0.1 netmask 0xfffffffc

VPN2# route add 172.16.0.0/24 10.0.0.1

Listing 17. Creating an RSA authentication key for the user with
the ssh-keygen(1)

VPN2# ssh-keygen -b 2048 -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_

rsa): <enter>

Enter passphrase (empty for no passphrase): <enter>

Enter same passphrase again: <enter>

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

The key fingerprint is:

cd:9c:3b:3a:c0:92:7f:c2:9b:6e:3a:48:dc:50:a4:2a

root@vpn2.kernel-panic.it

VPN2#

10/2010 28

HOW TO’S

So we have generated all the certificates and keys we
need; you can find them in the /usr/local/share/examples/
openvpn/easy-rsa/2.0/keys directory, ready to be copied
to the appropriate machines. But before proceeding to
copy the key files, we need to create, on both server and
clients, the directory (/etc/openvpn/private) that will contain
the private keys and assign it restrictive permissions to
prevent unauthorized access.

mkdir -p /etc/openvpn/private

chmod 700 /etc/openvpn/private

The following are the files that must be copied from the
CA-signing machine to the OpenVPN hosts:

• the ca.crt file (the CA certificate) must be copied to
the /etc/openvpn directory of all the machines (server
and clients);

• the ca.key file (the CA private key) must reside only on
the key-signing machine; if you want the OpenVPN
server to act also as the CA, just move this file to the
/etc/openvpn/private/ directory of the server machine;

• the dh1024.pem file (the Diffie Hellman parameters) must
be placed in the /etc/openvpn directory of the server
machine;

• the remaining .crt and .key files (i.e. the certificates
and private keys of the server and the clients) must
be copied to the respective machines; private keys
must be stored in /etc/openvpn/private and certificates
should reside in /etc/openvpn.

Finally, remember to delete all the files in /usr/local/
share/examples/openvpn/easy-rsa/2.0/keys/:

./clean-all

Server con�guration
OpenVPN supports a number of configuration parameters,
allowing you to deeply customize its behaviour. These
parameters can be either passed from the command-
line or in a configuration file. Omitted parameters take the
default value.

Below is a sample configuration file (see [OVPN-MAN]
(http://www.openvpn.net/man.html) for a complete list of
all the available parameters): see Listing 14.

The client-config-dir directive in the server configuration
file allows you to specify a directory containing client-
specific configuration files. These files must have have the
same name as the client's X509 Common Name, specified
during the creation of the certificates. In this case, we will
create a file named /etc/openvpn/ccd/vpn2.kernel-panic.it,

which will specify which private networks can be reached
through the OpenVPN client:

/etc/openvpn/ccd/vpn2.kernel-panic.it

iroute 192.168.0.0 255.255.255.0

iroute 192.168.1.0 255.255.255.0

Though very similar, both the route and iroute
directives are necessary, because route controls the
routing from the kernel to the OpenVPN server (via
the tun(4) (http://www.openbsd.org/cgi-bin/man.cgi?
query=tun&sektion=4) interface) while iroute controls the
routing from the OpenVPN server to the remote clients
[OVPN-HOWTO] (http://www.openvpn.net/index.php/
open-source/documentation/howto.html).

Client con�guration
The client-side configuration is pretty similar to server-side
configuration. The address and port of the server are specified
via the remote directive. Make sure that the configuration
matches the server configuration, in particular that they both
use the same protocol, device type and that they both enable
or disable lzo compression (see Listing 15).

Starting the VPN
Before starting the VPN, we have to enable IP forwarding
on both gateways, since they will have to perform routing
of network traffic:

sysctl net.inet.ip.forwarding=1

Uncomment the following line in /etc/sysctl.conf(5) (http://
www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&s
ektion=5) to re-enable IP forwarding after reboot:

Listing 18. Making sure that this �le has restrictive permissions

VPN1# cat authorized_keys

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAoWqL6wpgL5j3dlFtdY

WT+cc72F/FtMhmTBLUEcCMQQy8

/V9CptSn7yCC+1R5xhZD8WO3d11c7R8pUHPP77A3omFruEpk4pREui

sHnMtA6XyVFoxshhV1osyoQ/HJ

w6BhTmmGDCCyNsPmQyAPi9V7rL4NNSlll6mFXqLDNth6wf0qjo33BU

RsyKR6xxmt5QBhDpCBDel3EwLh

gE2Jy06XJZKa62/WU6ofbnXZWwGX8ZsbCPxqqu3EOBhMwlUgA1Igks

GfOcB4rgV+qpcPUfl3fQM67Mc7

Nwhh7jqkaCTpu/vs4OpBFt6j9eVxMgRGylg4a9tBcZY2588wPZZThp

x/sw== root@vpn2.kernel-pa

nic.it

VPN1# chmod 600 /root/.ssh/authorized_keys

http://www.bsdday.org.ar/consola-en

10/2010 30

HOW TO’S

!/usr/local/sbin/openvpn --daemon --config /etc/openvpn/

server.conf

and on the client:

/etc/hostname.tun0

up

!/usr/local/sbin/openvpn --daemon --config /etc/openvpn/

client.conf

OpenSSH
OpenSSH (http://www.openssh.org/) is a FREE version of
the SSH connectivity tools developed by the OpenBSD
project (http://www.openbsd.org/). It certainly needs
no introduction as it has now grown into the de facto
standard for secure console access over the Internet,
widely supplanting the infamous r commands.

Beginning with version 4.3 (http://www.openssh.com/
txt/release-4.3), OpenSSH also provides secure VPN
tunneling capabilities at both layer 2 and layer 3 of the
OSI model, by using the tun(4) (http://www.openbsd.org/
cgi-bin/man.cgi?query=tun&sektion=4) pseudo-device to
encapsulate network traffic within SSH packets.

Of the VPN solutions we've seen so far, OpenSSH-
based VPNs are by far the simplest to use and the fastest
to implement; however, they also imply a considerable
overhead. As a consequence, the documentation (http:
//www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektio
n=1&format=html#SSH-BASED+VIRTUAL) warns that
OpenSSH VPNs may be more suited to temporary setups,
such as for wireless VPNs, and recommends the use of
IPsec (http://www.kernel-panic.it/openbsd/vpn/vpn2.html)
for more permanent VPNs.

Con�guration
We will configure the same VPN topology (http://
www.kernel-panic.it/openbsd/vpn/vpn3.html#vpn) as in
the previous chapters; the VPN1 machine will act as the
OpenSSH server, waiting for connections from VPN2.

First off, we need to enable tunneling support on the
OpenSSH server, since this feature is disabled by default.
This is achieved by setting the PermitTunnel parameter in
/etc/ssh/sshd_config(5) (http://www.openbsd.org/cgi-bin/
man.cgi?query=sshd_config&sektion=5) to ethernet or
point-to-point, depending on whether you want the VPN
to operate, respectively, at layer 2 of the OSI model, layer
3 or both.

/etc/ssh/sshd_config

[...]

Enable layer-3 tunneling. Change the value to 'ethernet'

/etc/sysctl.conf

net.inet.ip.forwarding=1

So we're ready to start the VPN! Just run the following
command on the server:

vpn1# openvpn --config /etc/openvpn/server.conf

and the following on the client:

vpn2# openvpn --config /etc/openvpn/client.conf

To finish, we just have to create the configuration file
for the tun(4) (http://www.openbsd.org/cgi-bin/man.cgi?
query=tun&sektion=4) interface on the server (starting
OpenVPN from this file improves compatibility with PF):

/etc/hostname.tun0

up

References
• [OBSD39 http://www.openbsd.com/39.html] – The OpenBSD

3.9 Release
• [OVPN-FAQ http://www.openvpn.net/index.php/open-

source/faq.html#bridge2] – OpenVPN FAQ, What is the
difference between bridging and routing?

• [OVPN-SEC http://www.openvpn.net/index.php/open-
source/faq.html#security-issues] – Are there any known
security vulnerabilities with OpenVPN?

• [RFC4301 http://tools.ietf.org/html/rfc4301] – RFC 4301,
Security Architecture for the Internet Protocol

• [RFC4302 http://tools.ietf.org/html/rfc4301] – RFC 4302, IP
Authentication Header

• [RFC4303 http://tools.ietf.org/html/rfc4301] – RFC 4303, IP
Encapsulating Security Payload (ESP)

• [SCHNEIER] – A Cryptographic Evaluation of IPsec, N.
Ferguson and B. Schneier

• [RFC4306 http://www.schneier.com/paper-ipsec.pdf] – RFC
4306, Internet Key Exchange (IKEv2) Protocol

• [RFC3173 http://tools.ietf.org/html/rfc3173] – RFC 3173, IP
Payload Compression Protocol (IPComp)

• [CARP http://www.kernel-panic.it/openbsd/carp/]
 – Redundant �rewalls with OpenBSD, CARP and pfsync
• [OVPN-HOWTO http://www.openvpn.net/index.php/open-

source/documentation/howto.html] – OpenVPN 2.0 HOWTO
• [OVPN-SEC2 http://www.openvpn.net/index.php/open-source/

documentation/security-overview.html] – OpenVPN Security
Overview

• [OVPN-PKI http://www.openvpn.net/index.php/open-source/
documentation/howto.html#pki] – Setting up your own
Certi�cate Authority (CA) and generating certi�cates and
keys for an OpenVPN server and multiple clients

• [OVPN-MAN http://www.openvpn.net/man.html] – OpenVPN
2.0.x Man Page

http://www.bsdfund.org

10/2010 32

HOW TO’S

for layer-2 tunneling

PermitTunnel point-to-point

On the client side, the Tunnel parameter, in /etc/ssh/

ssh _ config(5) (http://www.openbsd.org/cgi-bin/man.cgi?
query=ssh_config&sektion=5), must be set to the same
value as PermitTunnel on the OpenSSH server:

/etc/ssh/ssh_config

[...]

Enable layer-3 tunneling. Change the value to 'ethernet'

for layer-2 tunneling

Tunnel point-to-point

Next, we need to enable IP forwarding on both VPN
gateways, since they will have to perform routing of
network traffic:

sysctl net.inet.ip.forwarding=1

Uncomment the following line in /etc/sysctl.conf(5) (http:/
/www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&s
ektion=5) to re-enable it after reboot:

/etc/sysctl.conf

net.inet.ip.forwarding=1

And the configuration phase is over: how could it be
easier? Now we only have to force sshd(8) (http://
www.openbsd.org/cgi-bin/man.cgi?query=sshd&se
ktion=8) to reread its configuration file by sending it
a SIGHUP signal:

VPN1# pkill -HUP sshd

Starting the VPN
Before actually firing up the VPN, we will carry out a couple
of preliminary steps on both the OpenSSH server and
the client, i.e. creating and configuring the tun(4) (http://
www.openbsd.org/cgi-bin/man.cgi?query=tun&sektion=4)
network device and setting up the appropriate routes to
the remote network(s) and hosts (see Listing 16).

Well, we're finally ready to initiate the ssh(1) (http://
www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektio
n=1) connection and establish the VPN tunnel. The -f

option requests ssh(1) (http://www.openbsd.org/cgi-bin/
man.cgi?query=ssh&sektion=1) to go to background after
prompting for the password, and the -w option specifies
the numerical ID of the tun(4) (http://www.openbsd.org/
cgi-bin/man.cgi?query=tun&sektion=4) device in charge
of forwarding VPN traffic; in our setup, we're using tun0 on
both client and server, so we will set this option to 0:0.

VPN2# ssh -f -w 0:0 1.2.3.4 true

root@VPN1's password: pAssWOrd

Finishing touches
To finish, we will configure the client machine to
automatically start the VPN on boot. To prevent the system
from hanging during startup until the user enters the
password, we need to create an RSA authentication key
for the user with the ssh-keygen(1) (http://www.openbsd.org/
cgi-bin/man.cgi?query=ssh-keygen&sektion=1) utility: see
Listing 17, and add the newly-generated key, contained in
/root/.ssh/id_rsa.pub, to the authorized keys in /root/.ssh/
authorized_keys on the server; please make sure that this
file has restrictive permissions (600): see Listing 18.

Next, on the server side, we need to create the configuration
file for the tun(4) (http://www.openbsd.org/cgi-bin/man.cgi
?query=tun&sektion=4) pseudo-device, /etc/hostname.tun0,
which will also include the necessary static routes:

/etc/hostname.tun0

10.0.0.1 10.0.0.2 netmask 0xfffffffc

!route add 192.168.0.0/24 10.0.0.2 >/dev/null 2>&1

!route add 192.168.1.0/24 10.0.0.2 >/dev/null 2>&1

Similarly, on the client side, we will create the /etc/

hostname.tun0 configuration file :

/etc/hostname.tun0

10.0.0.2 10.0.0.1 netmask 0xfffffffc

!route add 172.16.0.0/24 10.0.0.1 >/dev/null 2>&1

but also add the VPN start command in /etc/rc.local(8)
(http://www.openbsd.org/cgi-bin/man.cgi?query=rc.loca
l&sektion=8).

/etc/rc.local

[...]

echo -n ' OpenSSH-VPN'

/usr/bin/ssh -f -w 0:0 1.2.3.4

true

DANIELE MAZZOCCHIO
Latest version: http://www.kernel-panic.it/openbsd/vpn/

Bibliography
VPNs Illustrated: Tunnels, VPNs, and IPsec, Jon C. Snader, Addi-
son Wesley, 2006

http://www.hakin9.org

10/2010 34

HOW TO’S Closed-source and unsupported drivers with FreeBSD

www.bsdmag.org 35

Do you know about troubles that could bring
this simple transaction like WiFi network card
purchase?

Trivia
Some might ask – is it necessary to buy a WiFi-card
instead of a simple AccessPoint (AP)? At first glance you

Closed-source and

Sooner or later you come to a conclusion that you need to
have an enhanced mobility throughout your home place.
And you decide to purchase an Wi-Fi card and put it into
a home gate-keeper.

unsupported drivers with FreeBSD

What you will learn…
• How to perform a bare metal installation of FreeBSD with ne-

tworking enabled etc.

What you should know…
• How to patch, upgrade and install ports, initially con�gure Apa-

che, PHP, MySQL and Drupal)

Listing 1. My home router runs a stable release of FreeBSD 6.2

 $ uname -a

 FreeBSD bridge2 6.2-RELEASE FreeBSD 6.2-RELEASE #3: Mon Aug 4 17:28:07 MSD 2008 anton@bridge2:/usr/obj/usr/

src/sys/bridge2 i386

Listing 2. A new WiFi card isn't identi�ed correctly by FreeBSD

 $ pciconf -lv

xl0@pci1:4:0: class=0x020000 card=0x100010b7 chip=0x920010b7 rev=0x78 hdr=0x00

 vendor = '3COM Corp, Networking Division'

 device = '3C905C-TX Fast EtherLink for PC Management NIC'

 class = network

 subclass = ethernet

rl0@pci1:5:0: class=0x020000 card=0x813910ec chip=0x813910ec rev=0x10 hdr=0x00

 vendor = 'Realtek Semiconductor'

 device = 'RT8139 (A/B/C/810x/813x/C+) Fast Ethernet Adapter'

 class = network

 subclass = ethernet

none0@pci1:10:0: class=0x028000 card=0x3a711186 chip=0x03021814 rev=0x00 hdr=0x00

 vendor = 'Ralink Technology, Corp'

 class = network

10/2010 34

HOW TO’S Closed-source and unsupported drivers with FreeBSD

www.bsdmag.org 35

can figure out that there exist the fine models of ADSL-
modems with wireless capabilities and that could work as
AP. However, it should be noticed that:

a) not all home connections to an Internet-provider go
through a copper like phone- or cable-line;

b) you simply need to add a WiFi-capability to an already
working gate;

c) a WiFi-card itself costs several times cheaper of AP.

Okay, you've crawled through hardware specifications
available onsite, pros and contras of different models
from different manufacturers (D-Link, ASUS, TrendNet,
Edimax, etc.). And eventually come to a simple
conclusion – although there exist several independant
NIC manufactures, the most important about the WiFi-
card is an WiFi-chip that used inside – it doesn't matter
how your WiFi-card is labeled actually. Quite possibly
they might be having the same WiFi chip. So you decide
to skip that fancy feature like a guaranteed speed of
108 Mbit/s, and 801.11n specification and bought, for
example, a budget card – D-Link DWA-510. Luckily, it

Listing 3. It seems that no wireless driver has been found for
a new card

$ kldstat

Id Refs Address Size Name

 1 33 0xc0400000 72aba0 kernel

 2 1 0xc0b51000 59f20 acpi.ko

 3 1 0xc2409000 6000 linprocfs.ko

 4 2 0xc241c000 16000 linux.ko

 5 1 0xc2456000 2a000 ipl.ko

 6 1 0xc25ad000 3000 ng_iface.ko

 7 1 0xc25b8000 6000 ng_ppp.ko

 8 1 0xc271e000 2000 star_saver.ko

 9 1 0xc2745000 2000 rtc.ko

11 1 0xc2a29000 4000 ng_pptpgre.ko

11 1 0xc2a2d000 4000 ng_ksocket.ko

12 1 0xc2a33000 4000 ng_vjc.ko

13 1 0xc2a39000 2000 ng_tcpmss.ko

14 1 0xc2a3b000 3000 ng_mppc.ko

15 1 0xc2a3e000 2000 rc4.ko

Listing 4. Grepping through a kernel sources can give us a hint

$ cd /usr/src/sys/i386/conf/

$ cat m-gw | egrep ral

SCSI peripherals

device agp # support several AGP chipsets

Parallel port

device ppbus # Parallel port bus (required)

device plip # TCP/IP over parallel

device ppi # Parallel port interface device

If you've got a "dumb" serial or parallel PCI card that is

device ral # Ralink Technology RT2500 wireless NICs.

device ural # Ralink Technology RT2500USB wireless NICs

Listing 5. It's always advisable to have kernel sources installed so you can �gure out what exactly is supported (IDs are marked with bold)

 $ cd /usr/src/sys/dev/ral

 $ cat if_ral_pci.c | grep 0x1814

 { 0x1814, 0x0201, "Ralink Technology RT2560" },

Listing 6. Kernel from a vanilla FreeBSD 6.2 doesn't have a clue about our card (ID is marked with bold)

none0@pci1:10:0: class=0x028000 card=0x3a711186 chip=0x03021814 rev=0x00 hdr=0x00

10/2010 36

HOW TO’S Closed-source and unsupported drivers with FreeBSD

www.bsdmag.org 37

Listing 7. Conversion process with ndisgen utility

 ==

 ------------------ Windows(r) driver converter -------------------

 ==

 This script is designed to guide you through the process

 of converting a Windows(r) binary driver module and .INF

 specification file into a FreeBSD ELF kernel module for use

 with the NDIS compatibility system.

 The following options are available:

 1] Learn about the NDIS compatibility system

 2] Convert individual firmware files

 3] Convert driver

 4] Exit

 ==

 ------------------ Windows(r) driver converter -------------------

 ==

 Driver file conversion

 The script will now try to convert the .INF and .SYS files

 using the ndiscvt(1) utility. This utility can handle most

 .INF files; however, occasionally it can fail to parse some files

 due to subtle syntax issues: the .INF syntax is very complex,

 and the Windows(r) parser will sometimes allow files with small

 syntax errors to be processed correctly which ndiscvt(1) will

 not. If the conversion fails, you may have to edit the .INF

 file by hand to remove the offending lines.

 Press enter to try converting the files now:

 Conversion was successful.

 Press enter to continue...

 ==

 ------------------ Windows(r) driver converter -------------------

 ==

 Kernel module generation

 The script will now try to generate the kernel driver module.

 This is the last step. Once this module is generated, you should

 be able to load it just like any other FreeBSD driver module.

 Press enter to compile the stub module and generate the driver

 module now:

 Generating Makefile... done.

 Building kernel module... done.

 Cleaning up... done.

 The file rt61_sys.ko has been successfully generated.

 You can kldload this module to get started.

 Press return to exit.

10/2010 36

HOW TO’S Closed-source and unsupported drivers with FreeBSD

www.bsdmag.org 37

can be put into a MiniPC slot (comes as low profile
card) – so it must the right thing for a home router. D-
Link claimes that the card is compatible with 802.11b/
g standard and drivers for Windows/Linux operating
systems only are offered. But let's hope it will work
with FreeBSD as well. Because my home router runs
FreeBSD and I don't feel comfortable with changing it
onto another OS.

Moreover, I don't think serously about upgrading this
version of FreeBSD at my home router. It is stable, quick
in performance and does all necessary home network
chores. Next step I do – power off the system in order to
plug-in the new WiFi card and after that I switch
on FreeBSD box. Unfortunately, no new network
interface has been found.

Well, it's obvious that unknown card mapped
as none0@pci1:10:0 is our D-Link DWA510.
The only thing we know – the WiFi-chip
manufacturer. This is a Ralink company. Better
than nothing. Our next step is to figure out
what's wrong. Are there all drivers loaded during
a bootup process?

Grepping the kernel
Nothing like the ral0 or ath0 is loaded. And
although almost all WiFi-cards from a consumer
market (according to a statistics) are based on
chips manufactured by Ralink, Atheros and
Marvell (Intel and Broadcom aren't taken into
account as they operate in a hi-end market
segment) – we hit the wrong turn. Let's make
a more loose search in kernel sources – but
now we know what we're looking for – string
Ralink.

Grepping through a kernel configuration gives
us the following: see Listing 4.

It seems that there is a support for Ralink-
based cards. But apparently, our new card is
a bit new. But what exactly cards are supported
in this version of FreeBSD?

Yes, it's true. The only cards that can be
initialized properly for this FreeBSD release, are
based on chips that identified as RT2560 (ID =
0x0201). Compare this string with pciconf output:
see Listing 6.

Should we give up? Don't panic!

Convert Windows XP driver
and use NDISulator
We know that FreeBSD and Linux share the
same capability – to load binary drivers from

Windows XP by means of designed and implemented
Network Driver Interface Specification (NDIS). So it might
be a magic stick for our need.

In Linux it is known as ndiswrapper, while in FreeBSD it
appears as NDISulator. Being first introduced by Bill Paul
in FreeBSD 5.3.

So, there are to ways to generate a kernel driver for
FreeBSD from a binary PE-driver for Windows XP. First
one – is to use ndiscvt (old method), or ndisgen (for
FreeBSD versions 6.0 and higher).

Before actual conversion process we need to download
Windows XP drivers from Ralink site – section Support-

Listing 8. It is possible to use ndiscvt utility as well

cd /usr/src/sys/modules/if_ndis

cp ~/driver_ralink/*INF ./

cp ~/driver_ralink/*sys ./

ndiscvt -i NetRt61G.INF -s rt61.sys -o ndis_driver_data.h

make

Listing 9. Windows XP converted module is detected as ndis0 interface

kldload ./rt61_sys.ko

dmesg | grep ndis

ndis0: <D-Link Wireless G DWA-510 Desktop Adapter> mem 0xe5000000-

0xe5007fff irq 5 at device 10.0 on pci1

ndis0: NDIS API version: 5.0

ndis0: Ethernet address: 00:21:91:22:9f:20

Listing 10. Available working modes via NDIS interface

ifconfig -m ndis0

 supported media:

 media OFDM/48Mbps mode autoselect mediaopt adhoc

 media OFDM/48Mbps mode autoselect

 media OFDM/24Mbps mode autoselect mediaopt adhoc

 media OFDM/24Mbps mode autoselect

 media OFDM/12Mbps mode autoselect mediaopt adhoc

 media OFDM/12Mbps mode autoselect

Listing 11. The native backported driver is successfully loaded into a kernel
space

ral0: <Ralink Technology RT2561> mem 0xe5000000-0xe5007fff irq 5

at device 10.0 on pci1

ral0: MAC/BBP RT2561C, RF RT2527

ral0: Ethernet address: 00:21:91:22:9f:20

10/2010 38

HOW TO’S

www.bsdmag.org 39

>Windows. We are only interested in archive for PCI/
mPCI/CB (RT256x/RT266x).

Okay, we have download and unpacked the archive.
Let's get started with cooking the driver. Run ndisgen.

We step through a step 3) and finally the kernel driver
for FreeBSD is here. Alternatively, we could use the
second way, i.e. converted using ndiscvt utility (see
Listing 8).

Back to our console – we got if_ndis.ko, and we need to
reboot a system in order for this kernel driver being loaded
by ndis-module.

But first, let's load it into a memory and see whether the
card works.

Looks like our card is detected properly at last. Now we
can list modes list that can be applied to this WiFi NIC.

As we can see, the mode AccessPoint is missing.
Although it isn't listed we can force it to be used – run
ifconfig command as follows:

ifconfig ndis0 ssid my_net media OFDM/48Mbps mode 11g

mediaopt hostap up

Here we set our network name as my _ net, chose
to use high-speed connection mode – substring
media OFDM/48Mbps mode 11g, and as a last option we
force network interface to be used as AccessPoint –
parameter hostap.

Well, that's pretty a long way. Praps the easy way is
to install a modern version of FreeBSD, because we
know that this D-Link DWA-510 card is supported there?
Alas, you can't always change a working and stable
environment onto something else, even if you quite sure
that some subsystems are really outdated.

Is there a backport driver?
Anyway, we can continue working with ndis0 interface
without any problem. But there exist a little hope – it is
known fact that the structure of the drivers, and the kernel
itself does not change drastically with near releases, for
instance 6.0 and 7.0.

So there is a little chance that someone made
a backport of this driver from FreeBSD 7 to FreeBSD 6.
Let's ask Google.

Indeed, after a long search we could find
a patch [4]. Continue? Sure!

Copy it to /usr/src/sys location and apply the
patch:

patch -p0 <if_ral.diff

Now we need to compile ral-driver.

cd /usr/src/sys/modules

make ral

Driver is ready. By default this ral-driver is
included into a kernel. That's why we need
to comment it in a kernel configuration, and
afterthat recompile kernel. Only after you have
installed a kernel into /boot directory you can
test driver with kldload command:

kldload if_ral

Tracing the logs give us the following message:
see Listing 11.

That's very nice, because we have now the full
range of supported modes: see Listing 12.

So we can easily start the network interface
ral0:

ifconfig ral0 ssid my_net media OFDM/48Mbps

mode 11g mediaopt hostap 10.10.10.1 up

Listing 12. We have all modes supported by native driver

ifconfig -m ral0

ral0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 inet 10.10.1.1 netmask 0xffffff00 broadcast 10.10.1.255

 ether 00:21:91:22:9f:20

 media: IEEE 802.11 Wireless Ethernet OFDM/48Mbps mode 11g

<hostap>

 status: associated

 supported media:

 media OFDM/54Mbps mode autoselect mediaopt monitor

 media OFDM/54Mbps mode autoselect mediaopt hostap

 media OFDM/54Mbps mode autoselect mediaopt adhoc

 media OFDM/54Mbps mode autoselect

Listing 13. xxxxxxxx

ifconfig ral0

ral0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 inet 10.10.10.1 netmask 0xff000000 broadcast 10.255.255.255

 ether 00:21:91:22:9f:20

 media: IEEE 802.11 Wireless Ethernet OFDM/48Mbps mode 11g

<hostap>

 status: associated

 ssid my_net channel 1 bssid 00:21:91:22:9f:20

 authmode OPEN privacy OFF txpowmax 100 bmiss 7 protmode CTS

 dtimperiod 1 bintval 100

10/2010 38

HOW TO’S

www.bsdmag.org 39

Aloha! The wireless network is here! (see Listing 13)
Before actual reboot we need to include the following

string into /boot/ loader.conf:

if_ral_load = "YES"

And apply several security features, for example, start
daemons that will perform WEP- or WPA2-encryption.

Conclusion
Whilst we choose FreeBSD for it's known stability and
performance, there are chances that not all hardware
devices are supported. And you'll be facing a problem
– whether to stay with it, kick an upgrade process, or
simply move onto another operating system. Undoubtly,
the evolution even with operating systems is great. But
sometimes, you have no ability to change a thing – and
you will need to figure out how to run unmaintained
or even closed-source drivers. In this case, using the
drivers from Windows XP with NDIS emulator can be
a solution.

On the 'Net
• http://www.thejemreport.com/content/view/293/ [1]
• http://brainstorm.name/archives/33 [2]
• http://www.freebsd.org/doc/en/books/handbook/config-

network-setup.html [3]
• http://samodelkin.net/~oe/if_ral.diff [4]

ANTON BORISOV
The very �rst Anton's experience with UNIX was FreeBSD. It was
TWM, wget and Netscape Communicator. Many things have
changed greatly since then, but a true simplicity remained
unchanged – The Power to Serve. That's why the author prefers
to delegate several network functions to FreeBSD)

http://www.bsdmag.org

10/2010 40

LET’S TALK

Upon creating my online resume, I stumbled on
a field asking for IT certifcations. At that point, I
have nothing to type in that field. I wasn’t even

aware that I.T. certification(s) would be something to put
on a resume. So I left the field blank and completed my
online resume.

A couple of years passed after my resume has
been uploaded, I haven’t got any emails or calls from
employers using the online resume publishing site. I think
there’s something missing. I need to stand out and my
resume should be browsed by potential employers for
consideration in their job postings.

I have searched and looked at I.T. certifications from
different vendors and technologies and I decided I
would want to get one. Since the company I worked
for uses different distributions of Linux, a certification in
Linux must be the first I should get. I have used many
resources studying the Linux systems, from online and
printed materials to blogs and tutorials. I also used
online practice tests to see my familiarity and mastery of
the topics. When I was ready, I have signed up for LPI
101 examination and I passed it. Then I took LPI 102 and
passed it too. This time, I was awarded with the LPIC-1
certification.

Upon receiving my certificate, I immediately updated
my online resume to put my LPIC-1 in the IT certification
field. After a few days, I have received a couple of
emails from the site, which contains a list of employers
viewing my resume. Indeed my IT certification caught
the attention of employers and that I am now gaining
value.

I wasn’t satisfied with one certification and I went
on to take SCJP from Sun Microsytem. I passed
the examination and updated my online resume. As

expected, I received emails about job posting. I also
now get a lot of phone calls from employers saying that
We have viewed your online resume, would you like to
consider an interview for the position.....?. This has been
very fulfilling for me.

Having a certification is very rewarding personally and
professionally. It is some form of self-accomplishment.
First of all, you learn a lot of things by studying, practicing,
and making your way through the exam objectives. I for
myself, learned a lot from the preparations/reviews I did
for my exams. The things I learned were not day-to-
day topics. Instead, they were advanced topics ranging
from the internals, concepts, and applications. I was a
Linux user before my certification, and I became a Linux
Power user after I achieved it.

The skills I learned from LPIC-1 were my very
foundations for studying and using the FreeBSD
operating system. Although Linux and FreeBSD have
their differences, they have something in common, and
that is their UNIX roots (made to act, and based on
UNIX, respectively).

I read new study materials from time to time, as to keep
my skills fresh. I know for a fact that one could get rusty
if one does not use the skills gained. So being certified in
one technology does not mean you are a master of that
particular technology. One should update his/her skills by
reviewing the topics and studying the advancements in
that technology.

I’m looking forward to take the BSDA examination
next. But according to them, BSDA is available at events
and other conferences as for the time being, they have
not tied up with Prometric and VUE for examination
delivery. I’m looking forward to make my skills and
knowledge in FreeBSD go deeper and improve. And I

I.T. certifications

After graduating college, I have created an account for an
online resume publishing site.

and the value I got in it

I.T. certifications and the value I got in it

www.bsdmag.org 41

hope one day, I could take the BSDA examination and
pass it.

Certification alone is NOT enough (my personal opinion)
to be productive and competitive. In today’s highly
competitive market, you have to be highly skilled and
experienced. Having certification(s) does not guarantee
you on landing on a good high paying job, but it makes
your chance higher than other job seekers. In my point
of view, I.T. certification(s), proven skills, and experience
are the pieces that will give you the edge in today’s job
market.

JOSHUA EBARVIA
Joshua Ebarvia is a java programmer, systems administrator
and college lecturer. His passion is working and using operating
systems specially UNIX-based and UNIX-cloned systems. You can
reach him at joshua.ebarvia@gmail.com

a d v e r t i s e m e n t

http://www.rootbsd.net

Next issue is coming in November!

In the next issue:

- Commissioning FreeBSD
 with the Drupal Content
 Management Framework – Part 2
- FreeBSD applications
- and Other !

http://www.IXsystems.com

	Cover

	Dear Readers!
	Contents
	Commissioning FreeBSD with the Drupal Content Management Framework – Part 1

	Building VPNs on OpenBSD

	Closed-source and unsupported drivers with FreeBSD

	I.T. certifications and the value I got in it

