

4 BSD 3/2009

Editor’s Note

Dear All,
It is already the fifth issue of BSD magazine and we all hope there will be another 50...and more! I hope you will like
the refreshed layout of the magazine – short news and a little reorganization of the content. Hopefully, you will find it
useful and helpful in your journey to BSD world.

This issue is devoted to FreeBSD distribution. We did our best to cover the most interesting and useful topics in
form of a step-by-step tutorials, so that everybody can take the chance do it.

For beginners we prepared the article describing the process of FreeBSD 7.1 installation and configuration. In
the how-to’s section we covered topics like OpenSMTPD, GNOME desktop on FreeBSD, packaging software, Jabber
server, building wireless router, CPU scaping and much more.

In security corner you will find articles devoted to LDAP authentication and Snort Intrusion Detection Scanner. For
those of you, who are interested in multimedia on BSD systems, Donald T. Hayford wrote a great article on building
an embedded video web server. We also included lots of tips&trick by Dru Lavigne and Mikel King.

As always, we are waiting for your comments, replies, ideas and suggestions. If you would like to become BSD
author or betatester, don’t hesitate- keep the mails coming in!

Enjoy!

Karolina Lesińska
Editor in Chief

Editor in Chief: Karolina Lesińska
karolina.lesinska@bsdmag.org

Contributing: Remko Lodder, Gilles Chehade, Jan Stedehouder,
Edd Barrett, Eric Schnoebelen, Eric Vintimilla, Vermaden, Nicolas

Greneche, Svetoslav P. Chukov, Donald T. Hayford, Mikel King, Dru
Lavigne, Federico Biancuzzi

Art Director: Agnieszka Marchocka
DTP Technician: Ireneusz Pogroszewski

Przemysław Banasiewicz

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager: Ewa Dudzic ewa.dudzic@bsdmag.org
Marketing Director: Ewa Dudzic ewa.dudzic@bsdmag.org

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org
Advertising Sales: Karolina Lesińska

karolina.lesinska@bsdmag.org

Production Director: Marta Kurpiewska

Publisher :
Software Wydawnictwo Sp.z.o.o
02-682 Warszawa, Bokserska 1

Poland
worldwide publishing

Postal addres:
Software Media LLC

1521 Concord Pike, Suite 301
Brandywine Executive Center

Wilmington, DE 19803
USA

tel: 1 917 338 36 31
www.bsdmag.org

Software-Wydawnictwo Sp z o.o. is looking for partners from all
over the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org
Print: 101 Studio, Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment Division,
27500 Riverview Centre Boulevard, Suite 400, Bonita Springs, FL

34134 Tel: 239-949-4450.

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.
DVDs tested by AntiVirenKit GDATA Software Sp. z o.o.

Subscription Agency:
EMD The Netherlands - Belgium

P.O. Box 30157
1303 AC Almere
The Netherlands

Phone + 31 (0) 36 5307118
Fax + 31 (0) 36 5407252

Contents

5www.bsdmag.org

get started
Installing FreeBSD 7.1 with Enhanced
Security (Jails)
Remko Lodder

This article will guide people that are new to FreeBSD on
installing the software and enhancing it’s security by setting
up FreeBSD jails that will give service to for example an
webserver.

DVD description
DVD Contents

A description of DVD content – check what we have prepared
for you in this issue.

how-to’s
OpenSMTPD
Gilles Chehade

In this issue I will shamelessly take the opportunity to write
about the smtp server that was imported into the OpenBSD
source tree last November. It isn’t enabled yet, it isn’t even
linked to the build, but it is doing good progress and this
article will describe what it currently does.

Getting a GNOME Desktop on FreeBSD
Jan Stedehouder

‘Why would you want to install GNOME on FreeBSD? It’s a
KDE system!’ This summarizes some remarks I got when
checking out how to install the GNOME desktop environment
on a FreeBSD box.

Packaging Software for OpenBSD – Part 2
Edd Barrett

In the last article in this series, we looked at how to package
a simple piece of open source software for OpenBSD. In
this article we build on what we learned last time and move
onto some more advanced features provided by the ports
system in order to package software with more complex
needs.

A Jabber Data Transfer Component
Eric Schnoebelen

So, you’ve got your Jabber server up and running, the family
using it, and you’re still in contact with your friends on the
„walled garden” networks. You’re having family meetings in
using a conference room, and all the family communications
are secure. What next?

Building a FreeBSD Wireless Router
Eric Vintimilla

Why use a FreeBSD machine as a wireless access point?
Don’t most Internet Service Providers give you a free modem/
router? While this may be true most of the time, it is not
always the case. Besides, building your own is easy, and it
gives a great deal of options for both System Administrators
and control freaks alike!

CPU Scaling on FreeBSD UNIX
Slawomir Wojciech Wojtczak (vermaden)

Comparing FreeBSD to other sollutions like Solaris or Linux
implementations, that directly follow Intel’s defined C-states
and P-states for CPU, FreeBSD goes a bit further by offering
the end user every possible frequency that the CPU can run
on, this may sound misleading, but things will be simple afte

security corner
LDAP Authentication on OpenBSD Boxes
Nicolas Grenèche

LDAP (Lightweight Directory Access Protocol) is a massively
used protocol to store user’s information. This protocol is
implemented in OpenLDAP, a directory software available on
every operating system’s package manager.

FreeBSD and Snort Intrusion Detection
System
Svetoslav P. Chukov

What is an intrusion detection system? The Intrusion Detection
System shortly called IDS is a software and/or hardware
designed to help you to detect attempts of accessing computer
systems, mainly through a network, such as the Internet.

mms
Build An Embedded Video Web Server
With NetBSD
Donald T. Hayford

While it’s safe to say that the recently developed USB video
driver was built and tested using only a desktop “i386-
compatible” machine, the beauty of NetBSD is that the same
driver will work on any NetBSD-supported hardware. So grab
your favorite embedded processor and let’s try some video.

tips & tricks
FreeBSD Tips
Dru Lavigne

Whether you’re new to FreeBSD or have been using it for
some time, learning a new trick or two can save you time
and increase your user experience.

Maintaining System Configuration Files
Using Subversion
Mikel King

Recently I was asked about maintaining a data center full of
servers. More specifically about maintaining a repository of
the configuration files for all servers in the data center. And
this is what I am going to show you in this article.

interview
Q&A about Dtrace
Federico Biancuzzi

Federico interviews John Birrell and George Neville-Neil
about Dtrace – a dynamic tracing system developed by Sun
Microsystems

6

16

18

24

28

32

36

40

44

48

54

60

64

66

6 BSD 3/2009

get started Installing FreeBSD 7.1

7www.bsdmag.org

Installing FreeBSD 7.1 with
Enhanced Security (Jails)

This article will guide people that are new to FreeBSD on installing the software and
enhancing it's security by setting up FreeBSD jails that will give service to for example
an webserver.

Remko Lodder

We will begin by fetching the installation media,
then using the media to do the installation, we will
upgrade our system and place the foundation
for our jails, and finally setup the required

infrastructure around it. Advanced users that are already
familiar with how FreeBSD works, might benefit from the Jails
paragraph which you can find below.

Obtaining the installation media
So we decided to give FreeBSD a try, good! But how do
we get it running? Lets visit the FreeBSD website at http:
//www.freebsd.org/. We will see the index page of the website,
showing a big yellow Get FreeBSD now button. If we click on this
we will navigate to a new page, showing the available downloads.
For example the 7.1-i386 ISO images are available on: ftp://
ftp.FreeBSD.org/pub/FreeBSD/releases/i386/ISO-IMAGES/7.1/,
but it might be inefficient to download the files using the main
FreeBSD FTP server. There are localized FTP Servers probably
also near you which can be used to get the media. The localized
FTP Servers are available through ftp://ftp.<countrycode>.F
reeBSD.org/pub/FreeBSD/releases/i386/ISO-IMAGES/7.1 which
in my case would be: ftp://ftp.nl.FreeBSD.org/pub/FreeBSD/
releases/i386/ISO-IMAGES/7.1/. On the FTP Server there is a
list of downloadable files like: (see Listing 1). Personally I always
download the disc1.iso file, this file delivers me the standard
installation and does not require that I have internet-access
(which is the case for the bootonly ISO). If you download the
disc1 ISO file you can get a rapid installation, which takes less
then 15 minutes in my case.

Preparing the installation media
We have fetched the required ISO (either CD or DVD, depending
on your wishes) and need to put it on CD. If you have a burner
you mostly get software with it. Given that we do the FreeBSD

installation for the first time, I'll assume that there is some kind of
operating system already running on it, which should support the
burning of ISO files. Within Windows, if the software is correctly
installed, you can double click on the ISO file after which it will
burn the contents of the ISO file in a pre-determined format to
the CD or DVD. Please check whether the CD or is readable
before restarting the machine. You can do that by inserting the
CD or DVD and navigating through it's directory structure.

Starting the installation
Now that the CD had been burned we can boot from it.
The installation CD is configured to startup the installation
application immediatly so no further actions are required to
get the installer going.

Figure 1. Boot initial

6 BSD 3/2009

get started Installing FreeBSD 7.1

7www.bsdmag.org

Configuring
during the installation
The installation CD brings you to the
installer, which is the heart of the
installation that we will be doing. The first
window that we will be seeing is the main
screen. Here sysinstall (in case you want
to return to the application sometime
later) gives you the option to do various
configurations and select an installation
type.

We will start by picking the Standard
option, which is the most convient for
new users. The installer will tell us that
the upcoming screen will help us setting
up a partition scheme for the disk that
we will be using. By clicking [OK] we will
proceed to the next window, sometimes
this window is an alert that the geometry
is not the same as being advertised,
but I never had problems even with this
warning.

We click on [OK] again and the fdisk
screen will popup. Do not be afraid, you
do not have to understand this part.
Since we will be installing FreeBSD
we will use the entire disk (if you are
not sure whether you want to do that,
you can always install this in a virtual
machine, use a seperated disk, or read
the handbook for detailed instructions
on how to create multi-boot instances)
which makes it easy to get going. Press
the [A] button and a disk layout will be
automatically created. Navigate to the
middle line (Which is the entire disk that
we just created) and Press the [S] button.
This will mark the partition as active and
makes sure we can boot from the disk.

Then the installer will ask us where
we want to install the boot manager, do
we want to place it on the partition root,
or do we want to place it on the MBR
(which is the super root of the disk). We
will select the BootMgr and continue to
the next screen. The installer continues
by loading the disklabel editor. The
disklabel editor is used to configure the
partition, it enables you to select what
space you want to assign where, so
that you can limit the resources. Since
we do not want to think much about this,
we press the [A] button and the space is
being distributed via a standard scheme
(a formula is behind that, so that you will
always get the best possible solution).
Continue by pressing the [Q] button.

So we know how the disk layout is
going to be, we have made up a scheme

to see where we are going to put our
space, but we didn't select what to install
yet. Mostly I pick the Minimal installation.
This is the one that is being done the
quickest and has maximum flexibility
in the future. Of course you are free to
select the option you prefer instead.

After selecting the distribution type,
the installer will ask us from which part

we want to install the distribution. If
you burned the CD1 image or the DVD
image, you can select CD/DVD here, else
select the network installation (this is not
covered in this article). The installer will
dump the contents of the CD on the disk
layout as we defined it, and will continue
with question whether we want to setup
an ethernet or SLIP device. The latter

Listing 1. Files on the FTP

ftp> ls

229 Entering Extended Passive Mode (|||64964|)

150 Here comes the directory listing.

-rw-r--r-- 1 500 450 37826560 Jan 02 23:22 7.1-RELEASE-i386-

bootonly.iso

-rw-r--r-- 1 500 450 578529280 Jan 02 23:22 7.1-RELEASE-i386-

disc1.iso

-rw-r--r-- 1 500 450 556648448 Jan 02 23:21 7.1-RELEASE-i386-

disc2.iso

-rw-r--r-- 1 500 450 611702784 Jan 02 23:20 7.1-RELEASE-i386-

disc3.iso

-rw-r--r-- 1 500 450 301914112 Jan 02 23:19 7.1-RELEASE-i386-

docs.iso

-rw-r--r-- 1 500 450 1895702133 Jan 02 23:19 7.1-RELEASE-i386-

dvd1.iso.gz

-rw-r--r-- 1 500 450 231577600 Jan 02 23:15 7.1-RELEASE-i386-

livefs.iso

-rw-r--r-- 1 500 450 478 Jan 02 23:15 CHECKSUM.MD5

-rw-r--r-- 1 500 450 723 Jan 02 23:15 CHECKSUM.SHA256

Figure 2. Bootup install

8 BSD 3/2009

get started

9www.bsdmag.org

Installing FreeBSD 7.1

probably doesn't make sense to you
but perhaps Ethernet does. Ethernet is
the standarized cable that most people
plug in their machines and have internet
access. Select [YES] to configure the
Ethernet device.

Now that we have selected yes,
a new window appears with various
interfaces, select the one that sounds
like your internet-facing card. This
sounds a bit vague, but in case you have
one controller there are only four options,

three of them being: PLIP, SLIP and PPP,
which are most likely not the ones we
need to configure here.

Select the driver that remained,
and we will be asked to do
autoconfiguration of the interface by
using IPv6. Since we do not understand
this we select [NO]. Most networks in
home environments are setup to use
automatic configuration using DHCP.
This is our next option, so we will
select [YES] here. Now that we have
selected this, a new window appears
with advanced information about an
address that we obtained.

The window expects us to give a
name to the machine, select a name that
you favor and navigate to the OK button
and continue. The hostname is setup as
yourname.yourdomainname.extention. My
machines are all named after elves from
the Elvandar series so their name is:

<name of elf>.elvandar.org

Which makes me able to easily spot
which machine is which. After doing
this configuration, we will return to the
main screen, where we can select Exit
Installation. This will reboot our machine
with the fresh installation on it.

Rebooting the machine
for the first time
After the configuration had been
completed and we exit from the sysinstall
application, the machine will reboot so
that it will be prepared for it's first use.

Retrieving the latest source
code tree for FreeBSD 7.1
So, now that we have installed the default
installation of FreeBSD and restarted it
so that all required services are started,
it's time to make sure our system is as
up to date as possible. While there are
multiple ways to do this, I will use the
csup method to retrieve the latest source
code for the 7.1-RELEASE branch. We will
compile this into a new version for our
machine (including the latest security
patches) and it will finally form the
foundation for our Jail Infrastructure.

Logon to the system and switch user
to root.

% su -

Password:

#

Figure 3. Install account creation

Figure 4. Install dhcp

8 BSD 3/2009

get started

9www.bsdmag.org

Installing FreeBSD 7.1

You are now the root user and you will
be able to retrieve the source code and
eventually compile it. Now let us copy the
template CVSup file, which will be used
by csup to retrieve our source code. We
will place the copy in our root directory.

cp /usr/share/examples/cvsup/stable-

supfile /root/freebsd-71-csup

After that we need to edit the file so that it
does what we expect it to do:

vi /root/freebsd-71-csup

A new window will be drawn in which the
contents of the file will be displayed. We
need to modify two different variables,
which can be easily found by searching
for the text. Scroll down by using the
arrow keys and place the cursor on the
CHANGE_THIS part of the text below:

*default host=CHANGE_THIS.FreeBSD.org

Issue cw and type the following:
cvsup.countrycode where countrycode
should be replaced by the country you are
in. I would type cvsup.nl. After that press [esc]
and navigate to the line stating the default
release, which looks like the following:

*default release=cvs tag=RELENG_7

Place the cursor on the RELENG_7 part
and again issue cw and type RELENG_7_1
and hit [esc]. Issue <quote>:wq</quote>
after which the file had been saved. We
now set the server from which we will be
fetching the sources, and the distribution
that we have choosen. 7.1-RELEASE in
our case (including security patches).

You will return to a root prompt (#)
where we can update the source code:

csup /root/freebsd-71-csup

If everything had been configured
correctly this will take a little and will show
information about files that are being
added / checked out and things like that.
After the run had been completed you
will return to a root (#) prompt.

Compiling the latest source
code for your system
Now that we have the source code, we
can find it under /usr/src. Navigate to it
by doing:

cd /usr/src

Now we can start the upgrade
procedure. Note that I am expecting
you to use the GENERIC kernel and that
we do not modify things upfront. You

can find more information about the
procedure here [1], on how to adjust
your kernel configuration to your
specific need, note well that you should
be able to support yourself in case
you go for this option because only

Figure 5. Install disklayout

Figure 6. Install ethernet

10 BSD 3/2009

get started

11www.bsdmag.org

Installing FreeBSD 7.1

the GENERIC kernel is supported by the
FreeBSD team. Of course the various
teams will do their best to get you up to
speed in case you do have problems,
and one of them will be the question

whether or not the GENERIC kernel
works or not.

Assuming we will do a normal run
without any modifications, we will issue
the following:

make buildworld && make buildkernel

on the commandline which will result
in a new world and kernel in it's holding
place. If all went well you will have a
message stating that the kernel build
was succesfull (it will not tell you that
the world build was succesfull because
it scrolled out of view, but by using this
command, the kernel will only be build
when the world had been succesfully
completed).

<screen>>>> Kernel build for GENERIC

completed on ``date''</screen>

We can now issue make installkernel
and reboot into single user mode.
After rebooting logon again and again
navigate to /usr/src:

cd /usr/src

Start the mergemaster tool in order to
install the kernel:

mergemaster -p

This will install required support files and
configuration files that where needed,
so that the new world will be able to
succesfully install and start. If this
completes we can issue the following:

make installworld

followed by:

mergemaster -U

The latest mergemaster command will
automatically upgrade files that had not
been user modified.

When this completes we can reboot
the machine and everything will start
working again.

Using the latest source code
as a foundation for the Jails
With the latest sourcecode that we
have prepared and installed on the
host system it is possible to finally start
working on our jails. The idea of jails
that we will be presenting is heavily
borrowed from Simon Nielsen's guide of
installing FreeBSD Service Jails, which
is a form of jails that is being used for
service specific goals, like webservers
and things like that. Before we can

Figure 7. Install ethernet dhcp

Figure 8. Install mainoverview afterinstall

10 BSD 3/2009

get started

11www.bsdmag.org

Installing FreeBSD 7.1

do the setup though, it's important to
understand a few bits and pieces of the
upcoming installation.

The installation for the distribution
will be done in one so-called master-
jail. This master jail is the template
for each and every jail and will be
accessed read-only. Each jail will get
it's own space in which it can write to.
Following Simon's style we will do a few
definitions;

• Each jail will be mounted under the
/home/j directory. This will be our jail
root.

• /home/j/mroot will be the template
for all our jails and will be read only
for us.

• All jails will get a seperated directory
under /home/j and will be named
with something descriptive, like www
for the webserver.

• Each jail will have a /s directory
which will be linked to the read-write
system, this enables us to seperate
read-write access and protect our
default binaries and things. You are
free to make everything as read
only as possible, but be aware that
some directory's like /var and /tmp
need write access as well to write
away important state information
and logging.

• Each jail will have a read-write
system that is based upon /home/j/
skel

• Each jailspace (the read write
portion of each jail) will be created in
/home/js

For the sake of the installation we will
keep track of these definitions, but of
course you are free to modify that to
your needs. In case you do want to use
a seperated partition or anything, I would
suggest either /jails or /usr/local/

jails as the name for the directory
structure.

The directories to do this are not
setup automatically, so we need to
create them upfront:

mkdir /home/js /home/j

Because we already have up to date
sources, which are already compiled, we
can easily start the installation. Before
we can do that we need to create the
appropriate directores:

mkdir -p /home/j/mroot

cd /usr/src

make installworld DESTDIR=/home/j/

mroot

After that we need to navigate into the
/home/j/mroot directory and create the
skeleton for the ports:

Figure 9. Install user creation question

Figure 10. Installation bootmgr

12 BSD 3/2009

get started

13www.bsdmag.org

Installing FreeBSD 7.1

cd /home/j/mroot

mkdir usr/ports

portsnap -p /home/j/mroot/usr/ports

fetch extract

Now create the skeleton for the read-
write portion of the system

mkdir home/j/skel /home/j/skel/home

/home/j/skel/usr-X11R6 /home/j/skel/

distfiles

mv etc /home/j/skel

mv usr/local /home/j/skel/usr-local

mv tmp /home/j/skel

mv var /home/j/skel

mv root /home/j/skel

The mergemaster tool can assist us with
the installation (and later on updating)
the configuration files. Since this will
create additional directories that are
not needed, we need to remove them
afterwards.

mergemaster -t /home/j/skel/var/

tmp/temproot -D /home/j/skel -i

cd /home/j/skel

rm -R bin boot lib libexec mnt proc

rescue sbin sys usr dev

We are almost done, we need to setup
the read write file system sot hat we have
a place to store files etc.

cd /home/j/mroot

mkdir s

ln -s s/etc etc

ln -s s/home home

ln -s s/root root

ln -s ../s/usr-local usr/local

ln -s ../s/usr-X11R6 usr/X11R6

ln -s ../../s/distfiles usr/ports/

distfiles

ln -s s/tmp tmp

ln -s s/var var

Because we have specifically created a
read-write space in our jail, we need to
make sure that we can build ports in the
right directory, add the following to /home/j/
skel/etc/make.conf by doing the following:

echo "WRKDIRPREFIX?= /s/portbuild" >>

/home/j/skel/etc/make.conf

Our basic installation and setup had now
been done. Lets continue by setting up
specific jails, the example I am going to
give only handles setting up a webserver,
see the FreeBSD Handbook for additional
examples and more information.

Assuming everything went fine so far,
we will setup the basic things needed to
build a webserver. First, we will handle
the foundation for it and later we will use
third party packages that will enable to
use of the webserver. We will name the
jail www, which is the appropriate name
for a webserver.

Figure 11. Installation fdisk

Figure 12. Installation fdiskwarning

12 BSD 3/2009

get started

13www.bsdmag.org

Installing FreeBSD 7.1

Let us create the directories that are
required for this;

mkdir /home/j/www /home/js/www

Since we want to use the jails after a
restart, we will specify them in the /etc/
fstab file so that the machine will configure
the required directories during startup:

echo "/home/j/mroot /home/j/www nullfs

ro 0 0" >> /etc/fstab

echo "/home/js/www /home/j/www/s"

nullfs rw 0 0" >> /etc/fstab

The above will only make the directory
structure available, we of course need to
start the management foundation for the
jails as well. We can do that by adding
the following lines to /etc/rc.conf:

echo '

jail_enable="YES"

jail_set_hostname_allow="NO"

jail_list="www"

jail_www_hostname="www.example.org"

jail_www_ip="192.168.0.1"

jail_www_rootdir="/usr/home/j/www"

jail_www_devfs_enable="YES"' >> /etc/

rc.conf

We need to copy over the skeleton
directory to the jail, before we can do this
we need to install the sysutils/cpdup
utility:

pkg_add -r cpdup

This will remotely add the cpdup utility as
hinted by Simon's guide.

cpdup /home/j/skel /home/js/www

The jails are now ready to be started,
we will need to attach the various
required directories (which will happen
automatically at boot):

mount -a

And we need to start the jails

/etc/rc.d/jail start

You should be able to view information
about the jails that are being started now.
In case you didn't see this information, or
want to review information about what is
currently running, you can use the jls

command, which will list the active jails.
In order to do something fancy with the
jail, you need to get access to it. Since
we are logged in as root, we can easily
hop into the jail:

jexec 1 /bin/csh

This will give you the CSH shell within the
first jail (You can get the JailID from the
jls command).

Figure 13. installation installed congratz

Figure 14. Installation mainscreenbeforeinstall

14 BSD 3/2009

get started

15www.bsdmag.org

Installing FreeBSD 7.1

Installing third party
packages within your jails
We now have a complete jail running, but
no services yet. Before we determined
that we will be running a webserver on

this. I will give an idea on how to setup a
webserver, which you can adjust to your
own specific needs.

During the Jail installation we
retrieved a fresh copy of the FreeBSD

Ports Collection, by using the portsnap
utility. This enables us to easily install a
webserver. There are various webservers,
but the one commonly used by people is
the Apache webserver. It's also the best
known webserver (in my understanding)
and has lots of documentation available
online at http://httpd.apache.org.

The FreeBSD Ports Collection has
various copies of the Apache webserver,
with various tastes. We will install version
2.2 of the webserver and use default
installation options to get it going.
Remember, we are still in the jail.

Navigate to the Apache Ports
directory:

cd /usr/ports/www/apache22

To compile and install it use the
following:

make install

If this is your first time, a popup might
show a new window in which you
can select certain options that you
want to have enabled on your apache
installation. We do not care about this,
so we navigate to [OK] and continue
the build. After a while the installation
completes, and the webserver had been
installed. To start the webserver first add
the following line to /etc/rc.conf:

echo 'apache22_enable="YES"' >>

/etc/rc.conf

Followed by the start command:

/usr/local/etc/rc.d/apache22 start

The webserver will now be started. Start
a browser and navigate to the IP you
used to setup the jail, if all went well you
will see a page that mentions : "It works!".
Additional configuration is left to the
reader as an excercise.

Personally I have setup an hosting
webserver, mailserver, internal mailserver,
spamfilter + rbl server, playgroundserver
by using the same approach. Each and
every jail is seperated by eachother, and
cannot break out of their scope. Though
the current design is limited by having
available only a single IP for each jail, it
will change in the future and make the
FreeBSD Jails an even more robust form
of enhancing your FreeBSD box' security.

Figure 15. Installation mediaselection

Figure 16. Installation packagetoinstall

14 BSD 3/2009

get started

15www.bsdmag.org

Installing FreeBSD 7.1

What will be
there in FreeBSD 7.2
First of all, FreeBSD jails will be able to
use multiple IP's, both IPv4 and IPv6, as
well as IP-less jails. This enhancement
makes it easier for webservers for

example to do virtualhosting or do SSL
virtualhosting.

Concluding
After following this article you should be
able to install the FreeBSD 7.1 system

and setting up FreeBSD jails to do
service specific tasks. Furthermore, you
know what the upcoming version has to
offer in comparison with FreeBSD jails.

References
I talked a lot about the FreeBSD Handbook,
and actually loads of the content of this
article found it's history in the handbook.
The handbook is one of the best available
documents for an opensource Operating
System and covers basic things like the
installation, Unix Basics and advanced
things like Advanced Networking. I
think it's advisable for everyone to have
a peek at the handbook to get more
information about what we did and
how to get further with your machine:
http://www.freebsd.org/doc/en/books/
handbook/ Or if you rather read a
localized version, some people (including
me and a lot of other people from the
Netherlands) create these versions for
you. If it exists you can find it on:

h t t p : / / w w w . f r e e b s d . o r g / d o c /
<langcode>/books/handbook/
So for Dutch that would mean:

ht tp ://www. f reebsd.org/doc/nl/
books/handbook/

Figure 17. Installation selectcountry

Figure 18. Parallels booting install

Figure 19. Parallels main screen.

Remko Lodder is a 25 year old
FreeBSD enthusiast, in his spare time
he likes being with his son and girlfriend,
playing with FreeBSD systems, and
wearing various FreeBSD hats to help the
community. In his professional life Remko
is an Unix Engineer for Snow B.V. in the
Netherlands mostly focussing on Firewalls
and Security (Checkpoint/Juniper etc.).
You can contact him by sending an email
to: remko@FreeBSD.org

About the Author

16 BSD 3/2009

dvd content

The FreeBSD Release Engineering Team
is pleased to announce the availability of
FreeBSD 7.1-RELEASE. This is the second
release from the 7-STABLE branch which
improves on the functionality of FreeBSD
7.0 and introduces some new features.
Some of the highlights:

• The ULE scheduler is now the
default in GENERIC kernels for
amd64 and i386 architectures. The
ULE scheduler significantly improves
performance on multicore systems
for many workloads.

• Support for using DTrace inside
the kernel has been imported
from OpenSolaris. DTrace is a
comprehensive dynamic tracing
framework.

• A new and much-improved NFS
Lock Manager (NLM) client.

• Boot loader changes allow, among
other things, booting from USB
devices and booting from GPT-
labeled devices.

• The cpuset(2) system call and
cpuset(1) command have been
added, providing an API for thread to
CPU binding and CPU resource
grouping and assignment.

• KDE updated to 3.5.10, GNOME
updated to 2.22.3.

• DVD-sized media for the amd64 and
i386 architectures

For a complete list of new features and
known problems, please see the online
release notes and errata list, available at:

• http://www.FreeBSD.org/releases/
7.1R/relnotes.html

• http://www.FreeBSD.org/releases/
7.1R/errata.html

For more information about FreeBSD
release engineering activities, please
see: http://www.FreeBSD.org/releng/

Availability
FreeBSD 7.1-RELEASE is now available
for the amd64, i386, ia64, pc98, powerpc,
and sparc64 architectures.

For instructions on installing
FreeBSD, please see Chapter 2 of
The FreeBSD Handbook. It provides a
complete installation walk-through for

some configuration files or by confirming
that the automatically performed merging
was done correctly.

freebsd-update install

The system must be rebooted with the
newly installed kernel before continuing.

shutdown -r now

After rebooting, freebsd-update needs to
be run again to install the new userland
components, and the system needs to
be rebooted again:

freebsd-update install

shutdown -r now

Users of Intel network interfaces which
are changing their name from em to
igb should make necessary changes
to configuration files BEFORE running
freebsd-update, since otherwise the
network interface will not be configured
appropriately after rebooting for the first
time.

Users of earlier FreeBSD releases
(FreeBSD 6.x) can also use freebsd-
update to upgrade to FreeBSD 7.1, but
will be prompted to rebuild all third-party
applications (e.g., anything installed
from the ports tree) after the second
invocation of "freebsd-update install",
in order to handle differences in the
system libraries between FreeBSD 6.x
and FreeBSD 7.x.

For more information, see: http://
www.daemonology.net/blog/2007-11-11-
freebsd-major-version-upgrade.html

Support
The FreeBSD Security Team currently
plans to support FreeBSD 7.1 until
January 31st 2011. For more information
on the Security Team and their support of
the various FreeBSD branches see:

http://www.freebsd.org/security/

Trademark
FreeBSD is a registered trademark of
The FreeBSD Foundation.

users new to FreeBSD, and can be found
online at: http://www.FreeBSD.org/doc/
en_US.ISO8859-1/books/handbook/
install.html

Updating Existing Systems
NOTE: If updating from a 7.0 or earlier
system due to a change in the Vendor's
drivers certain Intel NICs will now
come up as igb(4) instead of em(4).
We normally try to avoid changes like
that in stable branches but the vendor
felt it necessary in order to support the
new adapters. See the UPDATING entry
dated 20080811 for details. There are
only 3 PCI ID's that should have their
name changed from em(4) to igb(4):
0x10A78086, 0x10A98086, and 0x10D68086.
You should be able to determine if your
card will change names by running
the command pciconf -l, and for the
line representing your NIC (should be
named em on older systems, e.g. em0 or
em1, etc) check the fourth column. If that
says chip=0x10a78086 (or one of the other
two IDs given above) you will have the
adapter's name change.

Updates from Source
The procedure for doing a source
code based update is described in the
FreeBSD Handbook:

• http://www.freebsd.org/doc/en_
US.ISO8859-1/books/handbook/
synching.html

• http://www.freebsd.org/doc/en_
US.ISO8859-1/books/handbook/
makeworld.html

The branch tag to use for updating the
source is RELENG_7_1.

FreeBSD Update
The freebsd-update(8) utility supports
binary upgrades of i386 and amd64
systems running earlier FreeBSD
releases. Systems running 7.0-RELEASE,
7.1-BETA, 7.1-BETA2, 7.1-RC1, or 7.1-RC2
can upgrade as follows:

freebsd-update upgrade -r 7.1-

RELEASE

During this process, FreeBSD Update
may ask the user to help by merging

PC-BSD 7.1

dvd contents
Contents description

17www.bsgmag.org

If the DVD content cannot be accessed and the disc is not damaged, try to
run it on at least two DVD-ROMs.

3/2009

If you have encountered any problems with the DVD, please write to: cd@software.com.pl

18 BSD 3/2009

how-to’s OpenSMTPD

19www.bsdmag.org

OpenSMTPD

In this issue I will take the opportunity to write about the SMTP server that was
imported into the OpenBSD source tree. It isn’t enabled yet-it isn’t even linked to the
build, but it is in progress and this article will describe what it currently does.

Gilles Chehade

When SMTPd was imported, several people asked
why we needed a new project and why we did
not import their favorite mta (mail transfer agent)
application. There’s actually more than just one

reason. Currently, OpenBSD ships with the well-known and
rather unpopular Sendmail, which has a very bad reputation
because of its past history of security issues, but I will get to
that soon. Long story short, many of us want to replace it with
another mta application, so let's see what the alternatives are.

If I look at my mail headers for the last few months,
Sendmail, Postfix, Exim, and Qmail account for most of the
traffic. Exchange is not going to be useful, so I guess we can
skip it.

This leaves us with Postfix, Qmail, and Exim.
Exim is licensed under the GPL, so we’ll not be considering

it here: OpenBSD no longer imports GPL licensed code into the
base, thus it isn't a possible alternative. I don't know what Exim
is worth; I can't honestly say I ever even ran it.

Postfix is licensed under the IPL (IBM Public License), so it’s
also a non-option: as this cannot go in either, the IPL contains
a clause which goes against the very goals of the OpenBSD
project.

At the time of this writing, Qmail is supposedly released to
the Public Domain, so it is a viable alternative from the license
point of view. Unfortunately, the developers do not agree that it
is a better choice than Sendmail and the fact is that this point
is clearly highly debatable. For every Qmail fan I find, I can find
someone who strongly opposes it. Not even to mention that
the author has been hard to deal with in the past and even if
Qmail is public domain, it is still likely that we would have to
work with the author at some point.

Sendmail turns out to be the best choice out of these. It
has a license which doesn't go against our goals, it is mature
and works great, and it isn't going to get your server hacked.

Sendmail is used by the largest corporations, with the most
complex setups, and it is actively followed and fixed as issues
arise.

By now you should be asking yourself well if Sendmail is so
nice, why change to something else ?.

I recently had to make changes to a setup that had been
running for months. I assumed I would deal with it in a few
seconds because I knew what I wanted to do and it was a
trivial task. I ended up spending another half an hour jumping
from a book to a search engine, and spending half an hour
testing the new setup just to make sure I did not break anything
with my two-line change.

As an OpenBSD user, I am used to getting things working
by reading manuals and comments in sample configuration
files provided with the system. Sendmail doesn't work that way:
if you try a setup with no book and no internet access then you
are very likely to fail if you are not very experienced with it.

This is why some developers, including myself, think we
need to provide a new SMTP server that is developed with
OpenBSD's goals of security and simplicity in mind.

Design and processes description
OpenSMTPD follows the same design as various recent
daemons in OpenBSD. It is a multi-process application
which uses the imsg framework to let processes do IPC,
while making use of several techniques to mitigate risks. The
daemon has a fully asynchronous design and, in theory, does
not block on IO. In practice we lack an asynchronous DNS
resolver (for now) and as a result we have all of our resolutions
serialized and blocking.

Except for one process, used for privilege separation, all
processes run with no privileges at all and are chrooted to
either /var/empty or the mail queue. The processes that need
to open files outside of their chroot jails will rely on imsg to

18 BSD 3/2009

how-to’s OpenSMTPD

19www.bsdmag.org

do fd passing from a process which can
access these files.

OpenSMTPD has several processes
which looks a bit scary at first look (see
Listing 1).

They all have very specific tasks
and while we attempted to reduce the
number of processes, it always turned
out to be a bad idea from either a
security or performances point of view.
It doesn't seem over-engineered either;
other mta applications have about the
same dispatch of tasks.

Let's review what they do:
The two most exposed processes

are (1) the SMTP server that handles
SMTP sessions from untrusted clients
over the network and (2) the control
process which handles the enqueuing
from system users. They do essentially
the same job, turning a set of recipients
into a structure that processes can play
with, however one does it by parsing a
command line, while the other does it by
parsing a session it has received over the
network. As the ps output above shows,
both processes run as user _SMTPd, but
they are also chrooted to /var/empty.

Each time an envelope is created,
it is sent to the mail filter agent that
is in charge of checking the rule set
and deciding if a recipient is rejected
or not. It acts as a firewall to the other
processes, rejecting envelopes that
we do not want to process at an early
stage. Later, this is where we will get our
mail filters plugged. The process runs as
user _SMTPd and chrooted to the /var/
empty directory. Envelopes which aren't
rejected are handed over to the lookup
agent. They are expanded and resolved
into a recipient usable by the queue
process. Expansion is done iteratively so
that aliases to aliases to accounts that
have forwards that contain aliases work
correctly, but with a hard limit to detect
loops in case some users play with self
referencing forwards. The lookup agent
is also in charge of doing all kind of
lookups other processes need, such
as looking up a group of MX records
or resolving a hostname. The process
also runs unprivileged as user _SMTPd,
but unlike other processes it can't run
chrooted, as we want it to access
various resources such as the aliases
database, resolv.conf, and the passwd
database /etc/pwd.db, amongst other
things.

The queue process is in charge
of recording envelopes to a disk-
based queue. It was initially also in
charge of scheduling deliveries and
updating envelopes, but this proved
to be the wrong idea as it made the
code considerably trickier. The fact is,
this process is queried by most of the
other processes and we do not want
it to perform any time-consuming
operations, as it could ultimately stop
handling imsg from other processes and
cause sessions to timeout. Thus it runs
unprivileged, and chrooted to the mail
queue root.

The runner process was introduced
as a solution to prevent queue process
from ever being too busy to handle
incoming imsg. The runner process
walks through the queue, detects if
envelopes are expired or if they can be
scheduled. When it finds envelopes that
are for an identical sessions and which
should be sent to the same remote
MX, it merges them into a batch. This
allows SMTPd to do a delivery to multiple
recipients in a single remote SMTP
session. Unprivileged and chrooted to
the mail queue root.

The mail transfert agent is an SMTP
client which establishes an SMTP
session with a remote MX and hands
it over one or more envelopes. Process
then keeps track of delivery status for
each envelope and notifies queue so
that a decision is made to try remove

envelope from queue, generate a mailer
daemon, or try the same delivery later.
It runs unprivileged and chrooted to
/var/empty.

The mail delivery agent is a very
simple process which takes care
of delivery by simply writing to a file
descriptor. The file descriptor points to an
mbox, a Maildir, or to a pipe we have to
another external mail delivery application,
such as procmail for example. Process
runs with no privileges and is chrooted
to /var/empty.

Finally, the parent process is in
charge of starting SMTPd and doing all
kind of privileged tasks on behalf of other
processes. It opens an mbox, Maildir, or
even a pipe to a process it just created
to start an external delivery agent. It is
currently used for authentication too as
we need privileges to read the secure
passwd database.

Programs
OpenSMTPD ships with SMTPd,
the SMTP server daemon, but also
with a small set of tools to help the
administrator in his daily tasks.There
are currently two tools:

 * makemap

 * SMTPctl

The makemap utility is used to generate
mappings of key/values which are used
for various purposes inside SMTPd. The

Listing 1. Processes list

mx1.poolp.org:gilles {109} ps auxwww | grep smtp

root 23533 0.0 0.2 1020 1948 p2 I+ 7:22PM 0:00.02 smtpd:

parent (smtpd)

_smtpd 7376 0.0 0.1 984 1508 p2 S+ 7:22PM 0:00.14 smtpd:

mail delivery agent (smtpd)

_smtpd 12218 0.0 0.2 1196 1588 p2 I+ 7:22PM 0:00.03 smtpd:

lookup agent (smtpd)

_smtpd 11378 0.0 0.1 984 1424 p2 S+ 7:22PM 0:00.13 smtpd:

mail filter agent (smtpd)

_smtpd 10534 0.0 0.2 1056 1596 p2 I+ 7:22PM 0:00.05 smtpd:

queue handler (smtpd)

_smtpd 2339 0.0 0.2 964 2032 p2 S+ 7:22PM 0:00.13 smtpd:

mail transfer agent (smtpd)

_smtpd 21042 0.0 0.2 1224 2464 p2 S+ 7:22PM 0:00.67 smtpd:

smtp server (smtpd)

_smtpd 21956 0.0 0.1 1020 1384 p2 I+ 7:22PM 0:00.00 smtpd:

control process (smtpd)

_smtpd 31724 0.0 0.2 1068 1604 p2 S+ 7:22PM 0:30.42 smtpd:

runner (smtpd)

20 BSD 3/2009

how-to’s

www.bsdmag.org

`newaliases' command is a hard link to
the makemap utility which operates in a
mode able to check correctness of the
aliases database. At the time of this writing,
makemap is also used to handle the virtual
users database, but a small redesign of
the makemap utility is in the works to let us
use maps for various other features.

The SMTPctl utility is used to control
and interact with the SMTP daemon. The
utility currently allows the following:

• Pausing and resuming processes
• The administrator can temporarily

stop local deliveries, remote
deliveries, or incoming sessions.
They can be paused and resumed
independentely so that it is possible
to stop relaying outgoing messages
while still accepting the incoming
sessions

• Live statistics display
• The administrator can request

the display of various runtime
counters which can be useful for
troubleshooting and understanding
how the server is being used. Statistics
look as follows (see Listing 2).

The administrator can also request the
display of queue-related information
such as a list of messages currently in
queue or currently scheduled. There is
still work being done on this area, but the
output is not likely to go through heavy
changes (see Listing 3).

The fields being: delivery method,
unique id, sender, recipient, timestamp,
and the number of times we attempt
delivery for this message. Each time the
messages are scheduled for delivery and
an attempt is made, the timestamp gets
updated so we have a precise idea of
when the last time we dealt with it was.

The runqueue, which can be
inspected with "show runqueue" contains
only the messages which have been
marked ready for delivery and will be
processed. A "show runqueue" output
looks identical to "show queue".

Enqueuer
SMTPctl can operate in a mode where
it emulates sendmail in reading a
message from its standart input and
registering it to the queue, without
establishing a network connection to the
server. In this mode, mail user agents
like the `mail' utility, or `mutt' from ports,
can transparently rely on SMTPctl via the
mailer.conf(5) mechanism.

Other tools may appear too but so far
all of our basic needs are covered with
these two utilities and the various hard
links to them.

Configuration
From the beginning, we decided to
provide a very simple configuration which
even a new user could understand upon
his or her first read. OpenSMTPD does
not roll a custom configuration parser,

but uses a pf-like syntax to describe
what is to be accepted and what is to be
rejected. Describing the configuration file
would consist of reading the man page,
so I will simply walk you through the
various steps of an imaginary setup. This
is how I like to get familiar with tools and
will allow us to see the different kind of
setups that can already be achieved.

Overview of sample
configuration file
If we remove aliases, for the sake of
simplicity, the default config file has the
following rules:

 listen on lo0

 accept for domain "localhost"

deliver to mbox "/var/mail/%u"

 accept for all relay

This means that SMTPd will listen on
the loopback interface, accept mails
for users of the "localhost" domain, and
accept local users to relay mail. listen
could take an address instead of an
interface name and a port if we did not
want to use the default one:

 listen on 127.0.0.1 port 2526

Providing the interface name will listen
on all INET and INET6 addresses that
this interface knows about.

The configuration above is barely
usable, it will simply allow local users to
relay mail wherever they want, and will
only accept mails for recipients that are
local.

What if we wanted to do something
simple like allowing all of our local
users to send mail anywhere, and also
accepting mail from the outside from the
domain "grazou.poolp.org" ?

Accepting mail for other
destinations than localhost

Assuming that my interface is bge0,
the configuration file could be changed a
bit to also listen on bge0:

 listen on lo0

 listen on bge0

 accept for domain "localhost"

deliver to mbox "/var/mail/%u"

 accept from all for domain

"grazou.poolp.org" deliver to mbox

"/var/mail/%u"

 accept for all relay

Listing 2. smtpctl statistics

 % sudo smtpctl show stats|grep '^smtp.'

 smtp.sessions = 4732

 smtp.sessions.aborted = 13

 smtp.sessions.active = 24

 smtp.sessions.ssmtp = 5

 smtp.sessions.ssmtp.active = 0

 smtp.sessions.starttls = 3231

 smtp.sessions.starttls.active = 11

- Queue display

Listing 3. smtpctl queue inspection

 % sudo smtpctl show queue | grep gilles@openbsd.org

 MTA|1233868410.kCcGFQoOEUq30259.3081509717|gilles@poolp.org|gilles@open

bsd.org|1233868419|0

 MTA|1233868631.cgBppzEFZFE10552.3573212294|gilles@poolp.org|gilles@open

bsd.org|1233868670|0

 MDA|1233868707.XNWYsjRbKbM15852.3848182339|gilles@poolp.org|gilles@graz

ou.poolp.org|1233868715|0

20 BSD 3/2009

how-to’s

www.bsdmag.org

At this point , SMTPd listens on both
lo0 and bge0 for connections. You
may be scared by the "accept for all
relay" rule as you'd assume it to apply
to bge0 and cause SMTPd to become
an open relay, but SMTPd has sane
defaults and assumes an implicit
"from localhost" rule if there aren't
any allowed sources specified. This
is why we need to "accept from all" in
our second rule: if we didn't specify it
then sessions on bge0 would assume
relaying is denied. With that in mind,
NEVER EVER EVER "accept from all for
all relay".

The second rule here allows anyone
to send mail to choupette@grazou.poolp
.org from any address on any interface,
and tells SMTPd that it has to deliver the
message to /var/mail/%u, where %u is
expanded to the system user the mail
has had its envelope resolved to.

The "all" part in "from all" is a keyword
that is more explicit than having a
netmask, but it is almost (we'll see later
why) equivalent to :

 accept from 0.0.0.0/0 for domain

"grazou.poolp.org" deliver to mbox

"/var/mail/%u"

Obviously this means you can use any
netmask or address in place of "all", so if
I wanted to allow only my local network
to use this SMTPd as the final node to
cvs.poolp.org, I could use the following
rule:

 accept from 192.168.0.0/16 for

domain "cvs.poolp.org" deliver to mbox

"/var/mail/%u"

The "relay" rule that we've seen earlier tells
SMTPd that it has to relay the message
to another MX host. This is done using a
DNS MX records lookup, which SMTPd
will use to find which nodes it should try
to send the message to. This is how the
SMTP protocol works, not a specificity of
OpenSMTPD.

Sometimes, however, you want to
bypass the MX lookup and force a route
to the next node. For example to have
your laptop always use your gateway
instead of trying to deliver mail itself.

This is done very easily through a
"route via" rule:

 accept for all relay via

"gw.poolp.org"

Listing 4. A new makemap utility

$ makemap

usage: makemap [-t type] [-o dbfile] file

Listing 5. Sendmail-compatible newaliases utility

$ sudo

newaliases

/etc/mail/aliases: 48 aliases

Listing 6. Enqueuer

$./send-mail gilles@poolp.org

Subject: foobar

This is a test

^D

$

Listing 7. Enqueuer used through the mailer.conf mechanism

$ cat /etc/mailer.conf |grep

send-mail

send-mail /usr/libexec/smtpd/send-mail

$ mail gilles

Subject: test

test

22 BSD 3/2009

how-to’s
When a "relay via" directive is declared,
SMTPd will only attempt to deliver to
the target host, bypassing MX records
lookup. At the moment we limit this to
one destination, but work will be done to
extend this support.

It may seem obvious, but just in case,
the gw.poolp.org needs to be aware of
this and should have a rule to accept
relaying from the internal network:

 accept from 192.168.0.0/16

for all relay

Adding IPv6 support
to our mail server
If you look at our examples so far, none
use an explicit address. We have no
"listen" directive or "from" rules with
an address or a netmask. This is for
a simple reason: IPv6 works out of the
box. Wherever you can put an address,
a netmask, or an interface, you can
stick an IPv6 address or netmask. We
did not provide any address so SMTPd
assumes we want to support inet AND
inet6.

IPv6 support works in both incoming
and outgoing ways, and is even given the
preference when it is applicable.

Adding SSL/TLS
support to our mail server
OpenSMTPD knows of two ways to deal
with SSL sessions: sSMTP which is just
a regular SMTP session over SSL on
a dedicated port; and starttls which is
the same SMTP session over SSL but
negotiated through an ESMTP extension
after a regular SMTP session has been
initiated.

I will not go through the details of
creating certificates as there is a man
page already for this. I could challenge
you to read OpenSSL documentations,
however you'd surely fall into depression,
so I'll encourage you to read starttls(8) on
OpenBSD's man pages instead.

When SMTPd starts, it sets up
its listening interfaces and looks for
matching certificates in /etc/mail/certs. If
it finds one, then it assumes that there is
SSL support on that interface and starts
advertising STARTTLS when the client
sends EHLO.

Setting up sSMTP is just a tiny bit
trickier:

 sSMTP listen on bge0

Voila! Prepending "sSMTP" to a listen
statement will tell SMTPd that we will use
sSMTP instead of STARTTLS.

At this point we can already ensure
that incoming sessions are handled
via a secure channel; however, we
also need SSL for outgoing mails. The
"relay via" rule we saw earlier can be
instructed to use SSL when it has to
relay messages:

 accept for all relay via sSMTP

"gw.poolp.org"

 accept for all relay via tls

"gw.poolp.org"

 accept for all relay via SSL

"gw.poolp.org"

The first rule will only accept relaying
if it can establish a sSMTP session
to the remote host. The second will
only accept relaying if it can establish
a regular session and remote host
supports STARTTLS. The third only cares
if we establish a secure session, through
sSMTP or starttls, whichever works. A
message will never be relayed through
an insecure channel if we declare that
relaying has to go through sSMTP.

Authenticating users
This is still experimental code but it does
work to some extent and I am the main
user of it so far.

A listening interface can be told that
it supports authentication using this very
simple rule:

 listen on bge0 enable auth

When "enable auth" is declared, SMTPd
advertises AUTH on that interface. The
support is currently limited to AUTH

PLAIN and AUTH LOGIN, so SMTPd will
not advertise AUTH unless the interface
has support for SSL and the client
could initiate a secure session (EHLO in
sSMTPm or EHLO after a STARTTLS).

Authentication currently uses the
bsd_auth(3) API which allows us to use
any backend for which we have a login
script written. Well, this is at least true in
theory, but I have only tried using system
authentication, and a custom sqlite-
based login script I wrote.

At the moment, SMTPd assumes that
an authenticated user has rights to relay,
which may need to be changed in the
future. Outgoing authentication is in my

todo list and ranks at a high position, but
isn't yet supported.

Current state
OpenSMTPD is NOT production ready
and will still need a lot of work before I
can honestly say "you can run it safely".
I have been running it for months, as
my primary MX backed up by sendmail
as secondary MX, and I believe it can
reach a usable state for non-critical
service in a very short timeframe, but
it still lacks essential features like a
flawless mailer daemons support for
instance, and something only time can
grant us: maturity. Many features are
planned, like a milter-like interface, and
the use of some persistent external MDA
applications for servers that store mail in
some db or have them pass through a
dedup utility and cannot afford to fork for
each delivery.

However almost all of the very basic
features are here, including some which
I did not discuss in this article because
they are being changed as I write:
aliases and virtual users support, use of
maps to enable outgoing auth, etc.

Configuration will still evolve and it
is likely that the examples are going to
change in the near future, but this was just
an overview. Changes will be documented
to the man pages and things will work out
of the box when we have a stable code
that is linked to the build.

We are confident OpenSMTP can
and will fill the needs of most people and
the most complex setups will still be able
to run sendmail, qmail, or exim, if we do
not support the features they need. Unlike
what some people tend to think, having
choice and alternatives is a good thing.

Gilles Chehade is a research and
development engineer at French search
engine Exalead, as well as a freelance
instructor and consultant. In the past, he
held various positions as editor, instructor,
developer, administrator, and consultant
for different companies and educational
organizations. After being an OpenBSD
user for nearly a decade, he joined the
project where he works mostly on userland
and network daemon code. You can visit is
website at http://www.poolp.org/~gilles/

About the Author

short news

MidnightBSD is a desktop operating system for
i386 and AMD64 PCs. It is based on FreeBSD, but
contains a heavily modified ports system named
mports. The next release, scheduled for late 2009,
will feature a new package
management system,
OS installer, Live CD, and
support for ZFS.

MidnightBSD 0.3 will be
the first release centered
on usability improvements.
User feedback suggests that the most common
problems with BSD on the desktop are installation
of the OS, software installation, and support
for hardware. We hope to improve the user
experience in these areas as well as provide better
documentation.

Chris Reinhardt is working on new tools
to manage software installation. mport is a

MidnightBSD

The latest version of PC-BSD, 7.1 Galileo Edition,
was recently released. With faster speeds, better
visuals, and more stability, Galileo provides a stellar
update for current PC-BSD users. Newcomers to
the OS will love the ease of installation that PC-
BSD's Push Button Installer (PBI) offers. With KDE's
beautifully practical window management tools,
and a high level of user-friendliness, Galileo makes
it easy to dive into the open source world.

PC-BSD 7.1 is built upon the FreeBSD 7.1-Stable
operating system. The Galileo edition includes
updated versions of KDE (4.2) and Xorg (7.4). New
KDE window effects, screen savers, and better 3D
Acceleration make Galileo a visually stunning, yet
highly functional, introduction to PC-BSD. The latest
version of the Push Button Installer implements
PBI Schema 2, which largely improves PBI self-
containment to increase reliability. Users may now
install FreeBSD Ports without touching the desktop
by installing PC-BSD into /PCBSD/local.

If you're looking for the Add / Remove Programs
tool, give up. It's not there. Coincidentally, the
Update Manager has vanished along with it. Both
have been combined under Software & Updates
with Galileo. The Updater Tray has been modified

PC-BSD 7.1 Galileo Edition

command line utility to install, remove, and
manage software packages from the console. It
is based on a new library, libmport; this library will
facilitate development of additional tools such as

a graphical version by Caryn
Holt, and integration with the
new OS installer.

The new installer,
minstall, will be a GTK
application. It is currently

under development and will
feature a Live CD environment to test the system
prior to installation. In addition to minstall, Lucas
Holt has been bringing in useful functionality from
FreeBSD and DragonFly.

The mports system has grown to 2,400 ports;
it is tested periodically with the cluster donated by
Eastern Michigan University’s computer science
department.

as well. It is now merely a tray applet which shows
users when updates are available. This is far less
taxing on the CPU than its previous functions.

The Galileo edition provides fixes to bugs in the
Wi-Fi and Networking tools. It also includes fixes
to some previous Linux Emulation problems. The
stability of Flash
9 has been
greatly improved
as well. PC-BSD's
System Installer
has been
enhanced and
improved, now
with upgrade
functionality, for
those who wish
to install PC-BSD
without wiping the
disk and losing
user data. With
these and future
updates, the
reasons to use
PC-BSD continue
to increase for
new and veteran
users alike.

For more information, or to download PC-BSD
7.1 Galileo Edition, visit http://www.pcbsd.org.

24 BSD 3/2009

how-to’s GNOME desktop on FreeBSD

25www.bsdmag.org

Getting a GNOME
Desktop on FreeBSD

Why would you want to install GNOME on FreeBSD? It's a KDE system! This
summarizes some remarks I got when checking out how to install the GNOME
desktop environment on a FreeBSD box.

Jan Stedehouder

There are a few reasons I can think of. For one, I
have been using GNOME quite extensively over the
last two years and it is a desktop environment I can
work with without wondering where function X or Y

is. Secondly, the KDE desktop has been undergoing some
serious changes since launching KDE 4.0. And while KDE
4.2 is shaping up nicely, it still has some rough edges that
stop me from trying it for day to day use, which is especially
important since I sometimes need to finish work, instead of
playing around with the box to get things working. And finally,
there is always the because it's there argument. If it can be
done, it begs to done.

In this article we will see how the GNOME desktop
environment can be installed on a FreeBSD-based box and
how the installed desktop compares to some siblings in
Linux.

Snags and shortcuts
The first requirement to try out GNOME on a FreeBSD box is
a working FreeBSD box. Which I had until I borked it big time.
With a rapidly approaching deadline I went for the alternative:
getting a prepared virtual machine online.

For this article I used two available virtual machines. On
bagvapp.com you can find a few dozen virtual machines,
mostly Linux, but also OpenSolaris, FreeBSD 7.1 and, if you
are so inclined, Windows 7 beta. The FreeBSD VM is about
900 Mb and takes up 4.5 Gb on your hard drive. It has been
tweaked here and there, but it works and it has the looks
(Figure 1).

The second virtual machine was already on my box, based
on the PC-BSD 7.02 DVD, though you can download a virtual
machine directly from the PC-BSD website. It gave an excellent
opportunity to test the PBI that delivers GNOME to users
(Figure 2).

Method 1: Using the PBI on PC-BSD
The repository for PBI's (http://www.pbidir.com) has a package
to install GNOME 2.22.3 on your PC-BSD box. PBI's, PC-BSD
Installers or push-button installers, are an easy way to install
new software. They contain all the needed files and libraries
and are self-contained. Installing a PBI doesn't affect the
underlying FreeBSD system and the software installed via
packages or ports.

The GNOME PBI is 425 Mb and reduces installing the
GNOME desktop environment to downloading, double-clicking,
entering your root password and following the steps in the
wizard. The installation begins with a warning message that
this PBI is considered experimental. The next step that requires
a user intervention is the question whether the GNOME Display
Manager (GDM) should replace the PC-BSD KDE Display

Figure 1. The FreeBSD virtual machine from Bagvapp.com is a pleasant and
easy way to try out FreeBSD proper

24 BSD 3/2009

how-to’s GNOME desktop on FreeBSD

25www.bsdmag.org

Manager (KDM). Selecting no will add
GNOME as option in the Sessions menu
of KDM (Figure 3), which is visible after
rebooting.

Method 2: Using
packages on FreeBSD
Another method, to be used on
FreeBSD proper, is outlined on
the FreeBSD GNOME page (http:
//www.freebsd.org/gnome/). You can
install GNOME either using ports or
packages. I can clearly remember
taking the ports route to get the
GNOME desktop environment and
considered it a bit too time consuming
for this article. Installing the desktop
via packages is simple enough. You
need to open a terminal and give
yourself root rights with:

su

and entering your root password.
To install GNOME you enter:

pkg_add -r gnome2

Once this is finished you repeat this for
additional collections,

• gnome2-fifth-toe
• gnome2-power-tools
• gnome2-office
• gnome2-hacker-tools

The fifth-toe collection contains programs
like Pan (newsgroups), Liferea (RSS
feeds), Xchat (IRC), Pidgin (IM), Bluefish
(web developement), Galeon (browser),
Inkscape (vector graphics) and GIMP
(raster graphics). The office collection
provides the GNOME office applications
like Abiword and Gnumeric. Both power-
tools and hacker-tools are geared
towards the more adventurous users.

Installing GNOME via packages
was hardly a problem. Granted, the
need to use the commandline would
shy away users coming from Windows,
but wouldn't be big deal for somewhat
more experienced Linux users. The
new desktop environment was added
automatically to the existing KDM of the
Bagvapp virtual machine.

The solution was to change the
PACKAGESITE environment to so-called
Tinderbox. For this you need to open a
terminal. Then, as user, enter:

#export PACKAGESITE=http://

www.marcuscom/tb/packages/7.1-FreeBSD/

Latest

After that, give yourself root rights and
install the various gnome2 packages.

This isn't the case with less-tweaked
FreeBSD installs. There you have to
manually edit the /etc/rc.conf file and
add the following line:

gnome-enable=”YES”

to start up the needed services. There
was only one issue. The FreeBSD

GNOME page states that GNOME
2.24 is availabe (GNOME 2.24.3 on the
Freshports website) and that using #pkg_
add -r gnome2 should install this version.
However, it downloaded version 2.22. It's
a minor annoyance on which I spend
some time trying to fix it.

Method 3: Using
packages on PC-BSD
The attempt to install GNOME via
packages on the PC-BSD box was halted
by the inability to fetch the packages. First,
I needed to change the PACKAGESITE
environment to the latest 7.1-release.

Figure 2. The PC-BSD virtual machine

Figure 3. After installing the GNOME PBI package the new desktop environment is available as choice in
the Sessions menu

26 BSD 3/2009

how-to’s

27www.bsdmag.org

GNOME desktop on FreeBSD

Under PC-BSD you open a terminal
(e.g. Konsole), give yourself root rights,
and then enter:

setenv PACKAGESITE ftp://

ftp.freebsd.org/pub/FreeBSD/ports/

i386/packages-7.1-release/Latest/

After that you use:

pkg_add -r gnome2

to install the GNOME desktop. Actually, I tried
both 7.0-release and 7.1-release, but each
resulted in warnings about dependencies,
sometimes resulting in failures to install a
package. The dependencies referred to
versions that were slightly younger or older
than available in the release. Both times
I didn't get a working GNOME desktop,
which made me feel glad to have used
cloned virtual machines for this set of
experiments.

Looks, feels and comparisons
Installing the desktop environment via PBI
(on PC-BSD) or packages (on FreeBSD)
both result in vanilla GNOME desktops
with their clean panels and menu's. The
PC-BSD desktop, which seemed quite
organized while using KDE, re-appeared
with a cluttered desktop (Figure 5)

One of the things I immediately
liked was the separate KDE entry in
the applications menu. On my Ubuntu
box, with three desktop environments
(GNOME, KDE and Xfce), the KDE
applications are mixed with all the
other applications. This makes for a
very full menu tree, so it was nice to
see a separate KDE entry. The top panel
contains entries to Applications (where
you can find your... well, applications),
Places (shortcuts to folders and
partitions) and System, which offers
access to various tools for settings and
management tasks. Anyone who has
some experience with GNOME desktops
would feel at home. The desktop might
look a bit plain, but a trip to www.gnome-
look.org, where loads of themes and
iconsets are available, should solve that.

When you install all five meta-
packages (gnome2, gnome2-fifth-toe,
gnome2-office, gnome2-hacker-tools
and gnome2-power-tools) you get a
complete environment for both mediocre
and more advanced tasks. Personally,
I don't like all of the choices that were
made for GNOME 2.24. For instance,
replacing Pidgin as the default IM-client
with the Empathy IM-client didn't cut it
for me. It wasn't as stable as I want it
to be, but as long as I can install Pidgin
alongside it I don't mind it's there. Ekiga
(formerly GnomeMeeting), the open
source alternative to Skype, has reached
version 3.0, so videoconferencing is now
possible. Abiword and Gnumeric are two
light-weight but fully functional programs
for wordprocessing and spreadsheets,
and Evolution is a powerful program
for e-mail and calenders. And, if you
do like the GNOME desktop, but not
the GNOME-based programs, you can
continue working with the KDE-based
alternatives.

This doesn't mean all is well. BPM,
the graphical front-end to install ports
under PC-BSD, wouldn't launch on the
GNOME desktop, nor would the System
Manager. Both programs require the
kcmshell and this appears not to work

Figure 4. Installing the GNOME desktop environment via packages is quite painless

Figure 5. The GNOME desktop on PC-BSD

26 BSD 3/2009

how-to’s

27www.bsdmag.org

GNOME desktop on FreeBSD

under GNOME. The Bagvapp virtual
machine, FreeBSD 7.1 proper (Figure 6),
wouldn't allow me to use the functions
under System>Administration, functions
that would normally result in a request to
enter the root password.

The GNOME desktop is used as
default by quite a few Linux distributions,
like Ubuntu, OpenSUSE, and Fedora
(Figure 7). For each of them it isn't a
problem to install and use the KDE
desktop. What are the major differences
between the FreeBSD GNOME desktop

and these three others? For starters, each
of these Linux distributions has graphical
frontends for various management tasks
like installing and removing software and
managing users.

How far the GNOME desktop can
be customized is shown by OpenSUSE
(Figure 8). Instead of two panels (one
at the top and one at the bottom of
the screen), there is one at the bottom.
Clicking on Computer reveals the slab,
the default menu panel, with an overview
of favorite and recently used applications.

Conclusions
Getting GNOME up and running on your
FreeBSD-based box doesn't require
much. When you are using PC-BSD it is
enough to get the PBI and on FreeBSD
proper the packages are waiting.
Granted, installing packages does
require some commandline skills, but
either way, you have a functional GNOME
desktop in less than half an hour. It was a
bit disappointing not being able to install
GNOME via packages on PC-BSD, after
having to change the PACKAGESITE
environment in order to get the packages
in the first place.

However, both PC-BSD and FreeBSD
users can get a vanilla GNOME desktop
and almost all tools they need in order to
get work done. What is lacking the most
for perfect end-user satisfaction is a
good default graphical tool for installing
and removing software, either for the
ports or the packages, (though I do have
a slight preference for the packages,
since it makes for a faster install).

One thought did come to the fore
while working with the GNOME desktops.
The KDE desktop is progressing rapidly
(and I did look at the KDE 4.2 desktop
on PC-BSD 7.1 alpha 1 while playing
around for this article) and the GNOME
desktop is a mature, solid and complete
environment. Both desktops still have
issues that need to improve in order
to be end-user friendly. Mind you, I
define end-user as a non-technical
user that works with computers to get
tasks done. But, the level of maturity is
such that both GNOME and KDE are
fine desktop environments regardless
of the underlying operating systems,
be they Linux or BSD (perhaps even
OpenSolaris). This might not suit the
evangelists of the various open operating
systems, but it does open new avenues
for new groups of FreeBSD users.

Figure 6. The GNOME desktop on FreeBSD 7.1

Figure 7. The GNOME desktop on Fedora 10

Figure 8. OpenSUSE has a customized GNOME
desktop

28 BSD 3/2009

how-to’s Packaging Software for OpenBSD – Part 2

29www.bsdmag.org

Packaging Software
for OpenBSD – Part 2

In the last article in this series, we looked at a simple OpenBSD port. Now we will
move on to some more advanced features provided by the ports system in order to
package software with more complex needs.

Edd Barrett

After reviewing the ports I could have used as an example,
I decided it would be more effective to introduce the
features individually, rather than to introduce a very
complex port encompassing all features.

Dependencies
Often a piece of software requires the functionality of another
package in the ports tree. You can define a number of
dependencies in your port's Makefile and the ports system
will ensure the necessary software is available. Dependencies
manifest themselves in 4 ways:

• BUILD_DEPENDS – Programs which are needed at build time
of the package, but not at run time. Build dependencies
are installed before the port starts building.

• LIB_DEPENDS – Shared libraries which the program links.
These get installed before the port is built and are needed
at runtime too.

• RUN_DEPENDS – Programs which are needed at runtime for the
software to work. These get installed at package install time.

• WANTLIB – Indirectly linked shared libraries and system
libraries. By this we mean libraries linked by other library
dependencies and libraries in the base system which are
not provided by ports.

The format of these variables is well explained in the
bsd.port.mk(5) manual page, which by now you should have
realized is a very valuable resource for porters.

It is very important that you take some time to check that
your port will not link any unexpected libraries that the GNU
configure script may automatically pick up, as this will lead
to your binary package linking different libraries depending
upon what libraries the build machine has installed. To be
safe you can disable all features you never want enabled

using CONFIGURE_ARGS. Usually you can use --without-xxx or
–-disable-xxx to disable optional features and similarly –-
with-xxx or -–enable-xxx to ensure certain functionality is built
in to the software you are building. In general be as explicit as
possible. Dependency examples:

LIB_DEPENDS = mad.>=2::audio/libmad

BUILD_DEPENDS = ::devel/cmake

RUN_DEPENDS = ::devel/ectags

The command make port-lib-depends-check can be used
to check for missing/extra library declarations in your
Makefile. Take a look at the library-specs(7) and packages-
specs(7) manual pages for further information on port
dependencies.

Patching
If a port requires modifications to it's source code in order
to build on OpenBSD then you will need to use the patching
facilities of the ports system.

Adding a patch to a port is simple. Consider we want to
make a patch to the configure script of a piece of software:

• First extract the port and apply any already existing
patches using make patch in the port's directory.

• Now cd into the sources, which are inside the WRKDIR, for
example version 2.0.9 of a port named 'nano' would usually
extract it's sources under w-nano-2.0.9/nano-2.0.9.

• Copy the existing version of the file we wish to patch
to a new file with .orig appended. Eg. cp configure

configure.orig.
• Now in the port's directory, run make update-patches. Ports

will now generate a patch for your changes and inform
you that it is about to launch you into an editor. You can

28 BSD 3/2009

how-to’s Packaging Software for OpenBSD – Part 2

29www.bsdmag.org

now hit enter and review the patch.
You will find the patch in the patches
directory of the port.

Ports which
Install Shared Libraries
Some ports will attempt to install shared
libraries, in which case some special
handling by ports is required.

First of all you should inform ports which
libraries the port is going to install, this is
fairly straight forward and will be explained
using the gettext (internationalization lib-
rary) port (see Listing 1).

As you can see, gettext installs
5 shared libraries, but what are the
numbers all about? When a port with
shared libraries is first included in the
OpenBSD ports tree, it's shared library
version starts at 0.0. Subsequent
updates to such a port will then have
it library versions bumped and the
rules for doing so are well documented
at http://www.openbsd.org/porting/
libraries.html . The numbers in the
comments are the release versions

as per the library author’s release,
not the OpenBSD library versions. It is
considered good practice to comment
SHARED_LIBS in this way.

The next thing to check is whether
the port uses GNU libtool to help
generate shared libraries. The tell tale
sign of this is that there are scripts
called libtool dotted around in the
build directory after make configure is
complete. You could use find . -name

'libtool' to verify this. You may also
wish to log the output of a port build
(make build 2>&1 | tee LOG) and search
inside the log for libtool invocations. If
you find your port using libtool, be sure
to set USE_LIBTOOL = Yes in your port
Makefile, causing OpenBSD's custom
/usr/local/bin/libtool to be used
instead. If you don't do this, the library
versions declared with SHARED_LIBS may
not be correct.

After the above steps, make update-
plist should create a file called
PFRAG.shared in the port's pkg directory,
listing shared libraries to be installed.

Multiple Packages
from One Port
Often it makes sense to for one port to
generate a number of binary packages.
The ports system provides three
methods of doing so: subdirectories,
multi-packages and flavors.

Subdirectories in Ports
Subdirectories allow a port to have
subdirectories, each with it's own
Makefile, patches and packing list.
Subdirectories are typically useful when
a piece of software is comprised of
many packages, each distributed in
separate source tarballs.

Implementing such a port is trivial
and is best explained with an example.
The TeX Live port uses subdirectories as
follows (see Listing 2).

In this example, the folders base
and texmf are processed sequentially
when make is run in the port's
directory. Please note the inclusion of
bsd.port.subdir.mk is required in order
for this to work.

Another feature provided by
ports, which can be used along side
subdirectories, is the Makefile.inc
file. This is basically a Makefile stub,
which gets included in Makefiles in
subdirectories. How is this useful?
Usually the maintainer of each
subdirectory is common and can go in
to a Makefile.inc, for example. You can
use any ports system Makefile variable
in Makefile.inc.

Package Flavors
Package flavors can be used to make
multiple packages from one port when
a separate packing list is not required. In
other words, flavors enable you to make
multiple versions of one package. Most
commonly this is to provide packages
which are compiled with different
features and dependencies enabled. To
choose which flavor of a port to build,
the FLAVOR environment variable is set,
for example: env FLAVOR=no_x11 make

install. If the FLAVOR variable is not set,
then the default flavor is built.

To make use of package flavors,
first a list of possible flavors (other than
the default flavor) and the default flavor
(FLAVOR ?=) must be defined. For example
the Music Player Daemon (mpd) port
can be built with optional tremor support
(see Listing 3).

Listing 1. Gettext

SHARED_LIBS += intl 4.0 # .8.2

SHARED_LIBS += asprintf 1.0 # .0.0

SHARED_LIBS += gettextlib 2.0 # .0.0

SHARED_LIBS += gettextsrc 2.0 # .0.0

SHARED_LIBS += gettextpo 3.0 # .4.0

Listing 2. Tex Live Port subdirectories

$OpenBSD: Makefile,v 1.3 2008/10/21 20:57:57 steven Exp $

SUBDIR += base

SUBDIR += texmf

.include <bsd.port.subdir.mk>

Listing 3. Package flavors in the mpd port

.if ${FLAVOR:L:Mtremor}

CONFIGURE_ARGS += --with-tremor \

 --disable-oggflac \

 --disable-shout

LIB_DEPENDS += vorbisidec::audio/tremor

.else

WANTLIB += theora

LIB_DEPENDS += vorbis,vorbisfile,vorbisenc::audio/libvorbis \

 speex::audio/speex \

 shout::net/libshout

.endif

30 BSD 3/2009

how-to’s
Now you can conditionally execute

parts of the port Makefile based upon
the flavor the build is requesting, using
the .if ${FLAVOR:L:M<flavor>} construct.
Using the mpd port as an example again
(see Listing 3).

In the above example, if the tremor
flavor is selected, some configure
arguments are added to enable tremor
support and to disable oggflac and
shoutcast support, then the library
specifications are updated accordingly.
When using make port-lib-depends-

check, be sure to run it once for each
flavor to avoid library specification
errors. See the bsd.port.mk(5) manual
page for more information on flavors
(FLAVORS AND MULTI_PACKAGES
section).

Multi-Packages
Multi packages are used when you
want to make multiple packages from
a single port and each package needs
it's own packaging stage. This method
is often used to split software from one
source tarball into separate counter-
pieces, for example server and client
packages.

First of all, a list of possible packages
is defined. Notice how multi-package
names start with a dash, so they are
not confused with flavor names. The
following example is a snippet from the
MySQL port:

MULTI_PACKAGES = -main -server -tests

Now multi-package specific variables
may defined:

COMMENT-main = multithreaded SQL

database (client)

COMMENT-server = multithreaded SQL

database (server)

COMMENT-tests = multithreaded SQL

database (regression test suite)

The default multi-package name is -main,
which will generate a package postfixed
as such. You may wish to create a more
suitable package name (as MySQL
does), for example PKGNAME-main =

mysql-client-${VERSION}.
As mentioned briefly before, each

multi-package has its own packaging
stage, which implies that each multi-
package will have its own packing list
and description (optionally also shared

library list and (un)install messages). So
using the above example we expect at
least a DESCR-main, PLIST-main, DESCR-
server, PLIST-server, DESCR-tests
and PLIST-tests file to exist in the pkg
directory of the port. As it happens, the
server component displays a message
using a MESSAGE-server file too, but this is
purely optional.

Modules
The concept of modules was
introduced back in OpenBSD 3.x so
that commonly used Makefile snippets
could be atomically grouped for
inclusion elsewhere in the ports tree.
The QT4 module is a good example.
Ports which build against QT4 always
have some common elements such
as build and library dependencies,
environment variables and configure
arguments.

For this reason the common
elements were grouped together in
/usr/ports/x11/qt4/qt4.port.mk and
ports wishing to build using QT4 can
now simply include this module and
not have to worry about duplicating
all of the common elements. For
example the QCA2 port uses the
x11/qt4 module: MODULES = x11/qt4.

Further information on port modules
is provided in the port-modules(5)
manual page.

Getting Your Port In-Tree
If you think your port will be useful to other
users and has been tested on -current
(and if possible, a couple of different CPU
architectures), then consider submitting it
to the ports mailing list for review. There
are a few conventions used here which
you should follow:

• The subject line should start with the
words NEW or UPDATE then the name
of the port, for example NEW: firefox 3

• For new ports, which are not already
in tree, attach a .tar.gz of the port.

• For port updates, mail an inline
unified diff.

• Always email in plain text
• Don’t top post. See http://en.

wikipedia.org/wiki/Posting_style#Top-
posting

Another thing to note is that if you take
maintainership of a port, you will be
expected to keep it up to date and fix any

issues which may crop up. If you don’t
want to be held responsible, you can
omit MAINTAINER from your port Makefile.
In such a case, the port becomes the
responsibility of no-one in particular.
Generally ports with maintainers are
preffered, as issues can be emailed
directly to the maintainer and therefore
be addressed quicker.

If your port is of high enough standard,
a developer will take it and perform the
necessary CVS operations for you, but
only once they have been given the OK
from another developer. Once your port
is in tree, binary packages for your port
will begin to appear in the snapshot
packages directory on the OpenBSD FTP
servers.

See the OpenBSD web page on
information of how to subscribe to the
ports mailing list.

Conclusion
You should now have a fairly good
understanding of how to package
third party applications for OpenBSD.
Of course we have barely scratched
the surface. I strongly encourage
that developers wishing to get into
this seriously, have a good read of
bsd.port.mk(5) and subscribe to the
ports@openbsd.org mailing list, to start
testing other peoples ports. I hope you
learned something or at least found the
articles interesting to read. Happy port
hacking people!

Edd is a BSc Hons Computing student at
Bournemouth University in the UK. He is
currently working on his final year project,
which is an experimental compiler, using
the Low Level Machine (LLVM) and
Python.

He is also a TeX user and member of
the TeX user group (both UK and US). Edd
was respobsible for bringing the TeX Live
typesetter suite port to OpenBSD.

When away from the keyboard, Edd
likes heavy metal and ale with friends.
He tells us the Judas Priest, Megadeth,
Testament gig last month in London was
superb!

About the Author

32 BSD 3/2009

how-to’s Getting more Twisted in Jabber

33www.bsdmag.org

A Jabber
Data Transfer component

So I can chat, but how do I send a picture to Mom? So, you've got your Jabber server
up and running, the family using it, and you're still in contact with your friends on the
walled garden networks.

Eric Schnoebelen

You're having family meetings in using a conference
room (never mind that little Sally is off at college, and
little Jimmy is doing foreign exchange in Bolivia), and
all the family communications are secure.

Now Little Jimmy wants to send mom a picture of the
wonderful casserole he made. But when trying to do a file
transfer directly between the two clients, the transfer bombs
out. All the computers at the house are NAT'd behind one
router, and much of Bolivia seems to be behind another NAT
device. What's the family sysadmin to do?

If you're like most people, your workstations/computers are
behind something like a NAT/PAT router mapping all of your
client workstations to a single public IP address. While this is
wonderful for protecting hosts and conserving IP addresses,
it makes point to point file transfer between two client behind
such devices nearly impossible.

Enter XEP-0065, The SOCKS5 Byte-streams XMPP extension.
It is designed for establishing out-of-band byte-streams between
users. The byte-stream can be either direct (peer-to-peer) or
mediated (through a proxy server). The mediated model is what
is used when both clients are behind NAX/PAT devices.

XEP-0065 is purely for file transfers, and other bulk
data transfers. It is supported by a wide variety of clients.
For real time audio and video conferencing over XMPP, a
different set of protocols is being defined and refined. That
protocol suite is called Jingle, and it's development is being
supported by Google, as part of Google's GTalk offerings.
We'll discuss Jingle further in a future article (as soon as
I find a component implementation for Jabberd2). Back to
XEP-0065.

Implementing XEP-0065
A XEP-0065 proxy server has been implemented in Python,
using the Twisted framework. We talked about using Twisted

and Twisted's server features when building, installing, and using
palaver. Proxy65 (found at http://proxy65.googlecode.com/
files/Proxy65-1.2.0.tgz) uses the Twisted plug-in/services
architecture, just as palaver did.

Obligatory pkgsrc
As you should expect by now, proxy65 can be found in pkgsrc,
in the wip category (at the time of writing). It can be found
as py-jabber-proxy65. Building from pkgsrc is just as with
everything else pkgsrc, change to the directory, type [b]make
install, and you're ready to fly. Skip down to the Configuration
section to learn how to configure Proxy65.

The hard way
If you haven't installed any of the previous Twisted
applications, then you'll need to download the current
edition of Twisted (8.1.0 as of this writing) from http:

Figure 1. SOCKS5-service-discovery

32 BSD 3/2009

how-to’s Getting more Twisted in Jabber

33www.bsdmag.org

//tmrc.mit .edu/mirror/twisted/Twisted/
8.1/Twisted-8.1.0.tar.bz2 and install it
using the standard Python installation
dance of:

bunzip2 Twisted-8.1.0.tar.bz2

tar xf Twisted-8.1.0.tar

cd Twisted-8.1.0

python setup.py build

sudo python setup.py install

No further configuration of Twisted is
needed. Now that Twisted is installed,
you need to grab the Proxy65 sources
from http://proxy65.googlecode.com/
files/Proxy65-1.2.0.tgz, and do the same
Python installation dance of:

gunzip Proxy65-1.2.0.tgz

tar xf Proxy65-1.2.0.tar

cd Proxy65-1.2.0

python setup.py build

sudo python setup.py install

Fortunately, for well-written Python
modules, build and installation is very
straightforward (and both Twisted
and Proxy65 are well-written Python
modules).

Configuring Proxy65
All the configuration for Proxy65 is done
via the Twisted manager command line.
If you've built from pkgsrc-wip, a startup
script for NetBSD's rc startup system has
been installed as /usr/pkg/share/exampes/
rc.d/proxy65. The installation message
describes the variables needed to set it up.
To properly configure Proxy65, you need to
have the following information:

• The shared secret for talking to
your jabberd2 router component.
(required)

• A group of address/port pairs to be
advertised/used as data transfer
addresses/ports (required, must be
the public IP address, and the ports
must be open)

• The Jabber ID for the proxy server,
as a fully qualified domain name.
(optional, defaults to Proxy65,
unqualified)

• The name of the host where
the jabberd2 router component
is running (optional, defaults to
localhost)

• The port for connecting to the
jabberd2 router component (optional,

Figure 2. Psi-Account-Properties-Misc

Listing 1. Begin: Example configuration settings

 * shared secret: "JabberIsGreat"

 * address/ports: 192.67.63.14:8160,192.67.63.14:8161

 * Proxy JID: proxy.jabber.cirr.com

 * Jabber host: jabber.cirr.com

 * Jabber port: 5347

 * Log file: /var/log/jabberd/proxy.log

 * PID file: /var/run/jabberd/proxy.pid

 * user: jabberd

(Yes, this command line is going to be long!)

Listing 2. Begin: twistd command line for Proxy65

 sudo twistd \

 --uid=jabberd \

 --logfile=/var/log/jabberd/proxy.log \

 --pidfile=/var/run/jabberd/proxy.pid \

 proxy65 \

 --jid=proxy.jabber.cirr.com \

 --secret='JabberIsGreat' \

 --rport=5347 \

 --rhost=jabber.cirr.com \

 --proxyips=192.67.63.14:8160,192.67.63.14:8161

34 BSD 3/2009

how-to’s
defaults to 6000, jabberd2's router
component listens on 5347)

• Path to the file where you want to
stash the Proxy65 process id

• Path to the file where you want to
have twisted log events related to
Proxy65

• Executing user for the Proxy65
component
One addition to your DNS

configuration is going to be required.
A hostname for the proxy service/
server needs to be added to your DNS
configuration so outside users can find
the proxy server. This needs to be a
routable, public IP address.

You're also going to need to modify
your firewall or NAT device to let the
ports listed above be for proxy use.
Given the wide variety of devices out
there, you'll have to figure that one out
on your own.

Assuming the following settings, I'll
provide a demonstration command line
(see Listing 1).

Twisted breaks the command line
up in to two segments. The generic
Twisted arguments (user id, log file, pid
file) and the Twisted application-specific
arguments (in this case, all the Jabber
stuff). With that said, here's our command
line (see Listing 2).

That's a pretty ugly command line,
so you probably want to roll it into a
shell script to be used at system boot,
or whenever you need to restart the
proxy.

With the proxy running, when your
favorite Jabber client does service
discovery, it should show a new service
of SOCKS5 Bytestreams Service. See
Psi’s service discovery screen (Image 1),
the new SOCKS5 Bytestreams Service is
highlighted.

Configuring Clients
The final step to using the proxy service
is to configure the clients to use it. That's
usually defined on a per server/account
basis.

In Psi, the data transfer proxy is
defined on a per account basis. On the
Account Properties window's Misc. tab,
the Data Transfe Proxy setting needs to
be filled in with the Jabber ID of the proxy
we defined earlier. (in the example, it is
proxy.jabber.cirr.com). The screen shot
below shows setting the Data Proxy in
the Misc tab (Figure 2).

In Pidgin, the data transfer proxy
is defined on the Advanced tab of the
Modify Account screen. The proxy is
defined in the File Transfer Proxies:
element. The screen shot below shows
this tab in Pidgin.

Other IM clients have similar
configuration screens and options to set
up the data transfer proxy.

To use the proxy, just select File
Transfer (or Send File, or similar) from
your chat window, and the client and
proxy will do all the work!

Upcoming Topics
In future articles, I'm planning on
describing how to implement a web-
based Jabber client, implementing
a publish-subscribe component for
jabberd2, and writing a XMPP bot. If
there are Jabber/XMPP topics you'd like
to learn more about, let me know, via
email as jabber@cirr.com, or catch me
on XMPP as eric@jabber.cirr.com.

Figure 3. Pidgin-Advanced-Account

Eric Schnoebelen is a 25 year veteran of
the UNIX wars, using both System V and
BSD derived systems.

He's spent more than 20 years
working with and contributing to various
open source projects, such as NetBSD,
sendmail, tcsh, and jabberd2.

He operates a UNIX consultancy,
and a small, NetBSD powered ISP. His
preferred OS is NetBSD, which he has
running on Alpha, UltraSPARC, SPARC,
amd64 and i386.

About the Author

short news

DragonFlyBSD is a BSD-centric operating
system project now in its fifth year of operation. In
February DragonFly came out with its 2.2 release,
also known as the second HAMMER release. This
release contains a large number of stability and
performance improvements over 2.0, improved
package-source (pkgsrc) compatibility, many new
and improved network drivers, and DragonFly's
new HAMMER filesystem.

The HAMMER filesystem offers automatic
snapshotting, fine-grained history retention, undo,
and master->multi-slave mirroring capability. All
functions can be accessed via the live filesystem.
The mirroring support includes a non-queued,
bandwidth-controlled streaming update capability.
It also sports instant boot-time crash recovery.
Multi-master clustering and mirroring are still
on the drawing board and a year or two away
from deployment at the very least, but all other
filesystem goals have been met. Unlike most
conventional filesystems, HAMMER does not like
to delete physical data. Fine-grained historical
data retention becomes more coarse-grained
during nightly maintainance and deleted data

DragonFlyBSD

The FreeBSD Foundation is in our 10th year of
supporting the FreeBSD Project and community
worldwide! We were founded to fill the need for
an outside organization that could support the
community's vision and growth. Since then we
have been actively involved in supporting three
major areas: developer communication, handling
legal issues, and funding development projects.

Over the last year we have: Sponsored FreeBSD
related conferences like BSDCan, EuroBSDCon,
AsiaBSDCon, meetBSD, and NYCBSDCon. We also
sponsored FreeBSD developer summits in Ottawa
and Cambridge.

Provided 23 travel grants and
funding to individuals to attend
these conferences.

Provided legal support
for the project on issues like
understanding the GPLv3 impact
on FreeBSD, providing a privacy
policy, trademark ownership
and permission, and other legal
issues that come up.

Provided grants for projects
that improve FreeBSD, like Java

FreeBSD Foundation

ultimately falls off the disk after its snapshot life is
exhausted (typically in the hundreds of days). For
this and other reasons HAMMER is designed to
operate with large disk partitions. It really only gets
comfortable with a few hundred gigabytes and
has a design capacity of 1 Exabyte. The filesystem
itself utilizes 64 bit dynamically generated inodes,
64 bit file offsets, and a 64 bit byte-offset device
API. HAMMER is not a RAID subsystem
and does not implement so f t -
RAID features as
would be found in
something like ZFS.
Ultimately HAMMER is
designed to become
a cluster filesystem
with quorum-based
redundancy. Most of HAMMER's
on-media data structures revolve
around a per-filesystem B-Tree.

Matthew Dillon
www.dragonflybsd.org

binaries, Network Stack Virtualization, Improving
Hardware Performance Counter Support, making
improvements to the TCP stack, Safe Removal
of Active Disk Devices, and Improvements to the
FreeBSD TCP Stack.

Provided equipment for developers working
to improve FreeBSD and projects like the NetPerf
cluster.

As a 501(c)3 charity, all of our work is funded
by donations. To find out more about what we are
doing or to make a donation, please visit www.free
bsdfoundation.org.

36 BSD 3/2009

how-to’s Building a FreeBSD Wireless Router

37www.bsdmag.org

Building a FreeBSD
Wireless Router

Why use a FreeBSD machine as a wireless access point? Don’t most Internet Service
Providers give you a free modem/router?

Eric Vintimilla

While this may be true most of the time, it is not
always the case. Besides, building your own is
easy, and it gives a great deal of options for both
System Administrators and control freaks alike!

Most routers offer some basic functionality, but the
possibilities are limitless with a home-built FreeBSD wireless
access point. You can set up highly specific packet filtering
rules, monitor traffic, email yourself custom reports, and even
set up internal bandwidth limits. Plus, being able to SSH into
your router is an added bonus!

Requirements
First and foremost, you must have a spare computer with
FreeBSD installed. This machine also has to have both a
wireless card and a wired NIC. An extra laptop makes a
great access point, since it takes up much less space than a
desktop computer, especially if you stand them on their side.
Software requirements will vary depending on what added
features you wish to have, but a basic setup will require pf,
bind, isc-dhcp40-server, and hostapd.

Installing the necessities
In order to make our wireless access point work properly, we
will have to add a couple of packages to our system. First,
check to make sure that bind is installed:

[blendax@moe ~]# named -v

BIND 9.4.2

If you get a command not found message, then you’ll have to
add it:

 [blendax@moe ~]# sudo pkg_add -r bind9

Once the package is added, check for hostapd (which is

part of the FreeBSD base):

[blendax@moe ~]# hostapd -v

hostapd v0.5.8

User space daemon for IEEE 802.11 AP management,

IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authenticator

Copyright (c) 2002-2007, Jouni Malinen <j@w1.fi> and

contributors

If you get an error message, you most likely have a minimal
install. You will either have to add it to your system by using
sysinstall to add some distribution sets or you can ftp into
ftp.freebsd.org

According to the FreeBSD Handbook, since the release
of FreeBSD 5.3, PF has been included in the basic install
as a separate run time loadable module. The system will
dynamically load the PF kernel module when the rc.conf(5)
statement pf_enable='YES' is present. However, we want
pf to use the ALTQ framework, which is used for queuing
network packets.

In order to enable this, we’ll have to customize our kernel
to include pf support. Luckily, this task is not as bad as it
sounds. First, make sure you have the kernel source code.

It can be found in /usr/src/sys. If you don’t have it, you’ll
have to get the latest source using your favorite method of
source synchronization.

Once you have the latest source, go to kernel configuration
directory. Then, make a copy of the GENERIC source, since
we’re going to use that as our base.

[blendax@moe ~]# cd /usr/src/sys/`uname -m`/conf

[blendax@moe ~]# cp GENERIC CUSTOM

Now, edit the CUSTOM file and add the following lines to the
end of it: see Listing 1.

36 BSD 3/2009

how-to’s Building a FreeBSD Wireless Router

37www.bsdmag.org

If you do not want to use ALTQ, you
can omit the last seven options.

Now, we’re ready to recompile! Start
by typing the following:

[blendax@moe ~]# cd /usr/src

[blendax@moe ~]# make buildkernel

KERNCONF=CUSTOM

[blendax@moe ~]# make installkernel

KERNCONF=CUSTOM

Once it’s finished, you will have to
reboot:

 [blendax@moe ~]# shutdown -r now

That is it for the kernel recompilation!

Setting up your wireless card
If you already have your wireless card
working properly, you can skip this
step. Otherwise, the first thing you will
need to know is what kind of wireless
card you have. More specifically, you’ll
need to know what kind of driver your
card uses. Usually, wireless cards will
use either the ath driver for Atheros
hardware or the wi driver for those
based on the Lucent Hermes, Intersil
PRISM, and Symbol Spectrum24
chipsets.

Check the man pages for these
drivers for a comprehensive list of
supported hardware. If your wireless
card does not fall into either of these
categories, your best bet is to go to
the manufacturer’s Web site and look
for FreeBSD drivers. If they do not
offer them, you’ll have to download the
Windows drivers and use FreeBSD’s
handy ndisgen tool to convert them. For
example, I have a really old laptop that
uses a Dell TrueMobile 1350 PCMCIA
Wireless Adapter (don’t laugh). Luckily,
ndisgen worked like a charm. Check its
man page for more information.

For the rest of this article, I will be
using the wi driver. If your hardware
requires the ath driver, the steps should
be similar. The first step is to load
the kernel module. To do this without
rebooting, type:

 [blendax@moe ~]# kldload if_wi

However, we want this to automatically
turn back on in case we have to reboot
our machine, so enter the following line
to /boot/loader.conf:

Listing 1. Kernel configuration

device pf

device pflog

device pfsync

options ALTQ

options ALTQ_CBQ

options ALTQ_RED

options ALTQ_RIO

options ALTQ_HFSC

options ALTQ_PRIQ

options ALTQ_NOPCC

Listing 2. Newly created wireless interface

wi0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu

1500

 ether 00:07:ca:01:e4:9a

 inet 192.168.0.10 netmask 0xffffff00 broadcast 192.168.0.255

 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11b <hostap> (DS/

2Mbps <hostap>)

 status: associated

 ssid freebsdAP channel 1 (2412 Mhz 11b) bssid 00:07:ca:01:e4:9a

 stationname "FreeBSD WaveLAN/IEEE node"

 authmode OPEN privacy MIXED deftxkey UNDEF wepkey 1:40-bit

 scanvalid 60 dtimperiod 1

Listing 3. DHCPD configuration

 ### GLOBAL SETTINGS

ddns-update-style none;

always-broadcast on;

default-lease-time 7200;

max-lease-time 7200;

authoritative;

option domain-name-servers 192.168.1.1;

option domain-name "localnet.localdomain";

option netbios-name-servers 192.168.1.1;

Wired Network

subnet 192.168.0.0 netmask 255.255.255.0 {

 range 192.168.0.100 192.168.0.199;

 option broadcast-address 192.168.0.255;

 option subnet-mask 255.255.255.0;

 option routers 192.168.0.1;

}

Wireless Network

subnet 192.168.1.0 netmask 255.255.255.0 {

 # NOTE: See: wired->range.notes

 range 192.168.1.100 192.168.1.199;

 option broadcast-address 192.168.1.255;

 option subnet-mask 255.255.255.0;

 option routers 192.168.1.1;

}

38 BSD 3/2009

how-to’s
 If_wi_load=”YES”

Another module that is required is wlan,
which offers generic support for 802.11
drivers.

This driver is automatically loaded
when you load wi. Unfortunately, there
are other drivers that we need, and we
will have to reboot our machine. Add the
following to /boot/loader.conf and then
reboot:

wlan_scan_ap_load="YES"

wlan_scan_sta_load="YES"

wlan_wep_load="YES"

wlan_ccmp_load="YES"

wlan_tkip_load="YES"

wlan_scan_ap provides AP mode
scanning and wlan_scan_sta provides
STA mode scanning. The last three
modules provide WEP support, AES-

CCMP support, and TKIP (WPA) support.
If you do not want to set up any type
of security (for example, if you actually
want your neighbors to have free
network access), then you can exclude
these. In this article, we are going to
use WEP protection (although, WPA is
definitely better).

Creating your access point
Assuming your wired connection is
already configured, you can set up your
access point by typing the following (of
course you can change the SSID and
WEP key to whatever you wish):

[blendax@moe ~]# ifconfig wi0 inet

192.168.0.1 netmask 0xffffff00

ssid freebsdAP wepmode on wepkey

0x1234567890 media DS/11Mbps mediaopt

hostap

If it worked, after you type ifconfig, you
should something like: see Listing 2.

Next, we're going to enable
forwarding between interfaces and turn
on the packet filter:

[blendax@moe ~]# sysctl -w

net.inet.ip.forwarding=1

[blendax@moe ~]# pfctl -e

Everything appears to be in order. Right
now we have a basic access point with
some security. However, we are not
done yet. Now, we are going to add
some customizations to our wireless
router!

Now, we are going to make some
customizations to our wireless access
point. The first task is to update our
packet filter configuration. Copy the
second example pf.conf to /etc/.

 [root@moe ~]# cp /usr/share/

examples/pf/faq-example2 /etc/

Next, edit the newly created pf.conf
file. Change the interfaces to your
wired networking connection. Once you
make your changes, you can load the
configuration file into pf by typing:

 [root@moe ~]# pfctl -Fa -f /etc/

pf.conf

In order to dynamically assign IP
addresses, we have to set up a DHCP
server. Install the ISC DHCP server:

 [root@moe ~]# cd /usr/ports/net/

isc-dhcp40-server

 [root@moe ~]# portinstall -P

Now, make the following changes in /
usr/local/etc/dhcpd.conf: see Listing 3.

We also have to edit /etc/

hostapd.conf: see Listing 4.
Finally, add the following to rc.conf so

the access point automatically restarts if
you reboot: see Listing 5.

That's it! After only a few steps, you
now have your own customized FreeBSD
access point. There are many more
things you can do with your wireless
router, such as setting up SSH access
and email alerts. The possibilities are
endless!

Listing 4. Hostapd configuration

interface=wi0

driver=bsd

logger_syslog=-1

logger_syslog_level=0

logger_stdout=-1

logger_stdout_level=0

debug=3

dump_file=/tmp/hostapd.dump

ctrl_interface=/var/run/hostapd

ctrl_interface_group=wheel

 ssid=freebsdAP

macaddr_acl=0

auth_algs=1

ieee8021x=0

Listing 5. Start the wireless interface on reboot

gateway_enable="YES"

hostname="freebsdAP"

ifconfig_rl0="DHCP"

ifconfig_wi0="inet 192.168.0.1 netmask 0xffffff00 ssid freebsdAP wepmode on

wepkey 0x1234567890 media DS/11Mbps mediaopt hostap"

pf_enable="YES"

pf_rules="/etc/pf.conf"

pf_program="/sbin/pfctl"

pf_flags=""

pflog_enable="YES"

pflog_logfile="/var/log/pflog"

hostapd_enable="YES"

named_enable="YES"

dhcpd_enable="YES"

sshd_enable="YES"

40 BSD 3/2009

how-to's CPU Scaping on FreeBSD UNIX

41www.bsdmag.org

CPU Scaling
on FreeBSD UNIX

FreeBSD, as many other today's UNIX systems offer scaling of CPU frequency
to save power and emit less heat (which indirectly also leads to less power
consumption).

Slawomir Wojciech Wojtczak
(vermaden)

Comparing to other solutions like Solaris or Linux
implementations, that directly follow Intel's
defined C-states and P-states for CPU, FreeBSD
goes a bit further by offering the end user every

possible frequency that the CPU can run on, this may sound
misleading, but things will be simple after reading the next
paragraph.

Lets check what steps are offered by Intel on T7300 2GHz
CPU: 800, 1200, 1600, 2000. These steps are supported on
mentioned operating systems, but FreeBSD offers these on
the same CPU: 150, 300, 450, 600, 750, 900, 1050, 1200,
1400, 1600, 1750, 2000 which means that you can save
even more power and you have a lot more flexibility on
choosing desired frequency. The same applies to desktop
Intel microprocessors, that of course support Intel Speedstep
technology, while Solaris or Linux use 1600 or 1866 MHz on
Intel E6320 model, FreeBSD stars at 250 ...

Turn It On
FreeBSD's powerd(8) daemon that is responsible for frequency
scaling is disabled by default, to turn it on with default settings
(which are pretty good by the way) you need to do two things,
enable powerd(8) service by adding powerd_enable="YES" to
/etc/rc.conf file, and then start the daemon itself:

box# /etc/rc.d/powerd start

Starting powerd.

box#

You may check if the powerd(8) daemon is really running by:

box# pgrep powerd

893

box#

FreeBSD, to support frequency scaling needs to have
cpufreq(4) compiled into the kernel (which is default from 7.1-
RELEASE) or cpufreq kernel module loaded if it is not compiled
in.

You can customize the powerd(8) daemon to switch to
higher or lower state at different load of your CPU then the
default, you will have to use powerd_flags option at /etc/
rc.conf file, below is my example, I encourage You to read man
powerd to get all the details.

powerd_flags="-i 85 -r 60 -p 100"

Now we have powerd(8) up and running scaling our processor
frequency, to get current values that powerd(8) picks up you
need to type this:

box# sysctl dev.cpu.0.freq_levels

dev.cpu.0.freq_levels: 2000/31000 1750/27125 1600/22000

Listing 1. Setting lowest frequency

box# sysctl dev.cpu.0.freq

dev.cpu.0.freq: 150

box# sysctl debug.cpufreq.lowest

debug.cpufreq.lowest: 0

box# sysctl debug.cpufreq.lowest=450

debug.cpufreq.lowest: 0 -> 450

box# /etc/rc.d/powerd restart

Stopping powerd.

Starting powerd.

box# sysctl dev.cpu.0.freq

dev.cpu.0.freq: 450

box#

40 BSD 3/2009

how-to's CPU Scaping on FreeBSD UNIX

41www.bsdmag.org

1400/19250 1200/13000 1050/11375 900/

9750 750/8125 600/6500 450/4875 300/

3250 150/1625

box#

Of course we can disable powerd(8) and
set the frequency that we want to use
manually, like that:

box# /etc/rc.d/powerd stop

Stopping powerd.

box# sysctl dev.cpu.0.freq=450

dev.cpu.0.freq: 2000 -> 450

box#

To sum up, cpufreq(4) kernel module
allows us to set other then default steps
for our CPU and powerd(8) is daemon
that automatically sets best step based
on the current system load to save
maximum power.

Setting Lowest Frequency
We can also set minimal step that
we want to use with powerd(8) we
will have to use sysctl(8) MIB called
debug.cpufreq.lowest. We can also
set that up in the /boot/loader.conf to
make it permanent after reboot, but we
can also change it on running system,
you will only have to restart powerd(8) to
make it know the new lowest frequency
setting: see Listing 1.

Setting Highest Frequency
Some laptops get little too hot when
running at maximum avialable speed for
their processor, also power consumption
grows as we use the top steps, by default
FreeBSD does not offer a sysctl(8) MIB
for that, but patch submited by Boris
Kochergin allows us to set also the
highest step that powerd(8) see Listing
2.

To apply this patch you will need to
do these simple steps:

box# cd /usr/src/sys/kern

box# patch < /path/to/patch

box#

Now you will have to recompile your
kernel (or just the module if you do not
have cpufreq(4) compiled in), official
FreeBSD Handbook will guide you thru
this process efficently. After reboot or
reloading cpufreq(4) module you can
now use new sysctl(8) MIB called
debug.cpufreq.highest that you can use

Listing 2. Patch that enables setting highest frequency

--- kern_cpu.c.orig 2008-11-08 13:12:24.000000000 -0500

+++ kern_cpu.c 2008-11-08 10:33:18.000000000 -0500

@@ -131,12 +131,16 @@

 DRIVER_MODULE(cpufreq, cpu, cpufreq_driver, cpufreq_dc, 0, 0);

 static int cf_lowest_freq;

+static int cf_highest_freq;

 static int cf_verbose;

 TUNABLE_INT("debug.cpufreq.lowest", &cf_lowest_freq);

+TUNABLE_INT("debug.cpufreq.highest", &cf_highest_freq);

 TUNABLE_INT("debug.cpufreq.verbose", &cf_verbose);

 SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD, NULL, "cpufreq

debugging");

 SYSCTL_INT(_debug_cpufreq, OID_AUTO, lowest, CTLFLAG_RW, &cf_lowest_freq,

1,

 "Don't provide levels below this frequency.");

+SYSCTL_INT(_debug_cpufreq, OID_AUTO, highest, CTLFLAG_RW, &cf_highest_

freq, 1,

+ "Don't provide levels above this frequency.");

 SYSCTL_INT(_debug_cpufreq, OID_AUTO, verbose, CTLFLAG_RW, &cf_verbose, 1,

 "Print verbose debugging messages");

@@ -295,6 +299,14 @@

 goto out;

 }

+ /* Reject levels that are above our specified threshold. */

+ if (cf_highest_freq > 0 && level->total_set.freq > cf_highest_freq)

{

+ CF_DEBUG("rejecting freq %d, greater than %d limit\n",

+ level->total_set.freq, cf_highest_freq);

+ error = EINVAL;

+ goto out;

+ }

+

 /* If already at this level, just return. */

 if (CPUFREQ_CMP(sc->curr_level.total_set.freq, level->total_set.freq)) {

 CF_DEBUG("skipping freq %d, same as current level %d\n",

@@ -617,8 +629,13 @@

 continue;

 }

- /* Skip levels that have a frequency that is too low. */

- if (lev->total_set.freq < cf_lowest_freq) {

+ /*

+ * Skip levels that have a frequency that is too low or too

+ * high.

+ */

+ if (lev->total_set.freq < cf_lowest_freq ||

+ (cf_highest_freq > 0 &&

+ lev->total_set.freq > cf_highest_freq)) {

 sc->all_count--;

 continue;

 }

42 BSD 3/2009

how-to's
to limit the maximum step for powerd(8).
Same as for the lowest setting the
best place for making it permanent is
the /boot/loader.conf file. After you
have choosen your lowest and highest
settings, avialable frequencies showed
by dev.cpu.0.freq_levels will be now
limited to these settings:

box# sysctl dev.cpu.0.freq_levels

dev.cpu.0.freq_levels: 1200/13000

1050/11375 900/9750 750/8125 600/6500

box#

Below you can see a table that
presents power consumption of
avialable CPU frequency steps from
Intel T7300 processor, all measured
using external wattmeter without battery
inside the laptop, just on A/C. CPU was
of course loaded to 100% using four
python(1) precesses calculating this:
999999999999 ** 999999999999; (see
Table 1).

I believe that 1200MHz seems the
best maximum frequency to use on that
specific CPU, all higher ones consume
too much power. I also measured
idle power consumption, but even the
difference between 150 and 2000 is
marginal (3W) so only fully loaded power
consumption is important.

Using C-states
We now know how to select
frequencies that we want to use on our
CPU, now it’s time to select C-states,
that offer various levels of sleeping our
CPU (or exact cores) if they are idle
for some period of time. Below is the
table that lists C-states avialable for

T7300 Intel CPU, more recent versions
from Montevina platform can have
even more C-states with even deeper
sleeping (see Table 2).

To check which steps are supported
and avialable on FreeBSD for your CPU
run this command:

box# sysctl dev.cpu.0.cx_supported

dev.cpu.0.cx_supported: C1/1 C2/1

C3/57

box#

So in that case FreeBSD supports C0 to
C3 states on T7300 CPU, you can get/set
the lowest C-state for each core, you can
set them that way:

box# sysctl dev.cpu.0.cx_lowest

dev.cpu.0.cx_lowest: C1

box# sysctl dev.cpu.0.cx_lowest=C3

dev.cpu.0.cx_lowest: C1 -> C3

box# sysctl dev.cpu.1.cx_lowest

dev.cpu.1.cx_lowest: C1

box# sysctl dev.cpu.1.cx_lowest=C2

dev.cpu.1.cx_lowest: C1 -> C2

box#

There is a little catch that you need to
know about using C-states, if you set all
cores to highest C-states, C3 in mine
case, your touchpad will have little lag
before you will be able to use it (about
1 second) which can be very annoying
in the long term, the solution is to set
one core to C-state that offers rather
low latency to wake up the core, C2 to
be precise and all other cores can be
set to use the lowest possible C-state
to save as much power as possible. To
make these settings permanent use as
usual the /boot/loader.conf file. You can
also display C-states usage statistics per
core like that:

box# # sysctl dev.cpu.0.cx_usage

dev.cpu.0.cx_usage: 0.00% 0.04% 99.95%

box# sysctl dev.cpu.1.cx_usage

dev.cpu.1.cx_usage: 0.00% 100.00%

0.00%

box#

Other Settings
You can also lower the kernel's timer
frequency by changing the sysctl(8)
MIB named kern.hz from the default
1000 to 100, this can be done only
at boot time, so you need to place
kern.hz=100 line in /boot/loader.conf
and reboot. It is also planned in future
FreeBSD versions to make 100 the
default value, but we will not see that
until 8.0-RELEASE propably. Other thing
you can do, that is not really related to
CPU is mounting all your filesystems
with noatime option.

Now several words to AMD
precessors owners, FreeBSD also
supports frequency scaling on AMD
CPUs with Cool'n'Quiet, the AMD's
implementation for frequency scaling. It
works the same way as we have used it
on Intel CPUs in this article.

... and that is all about scaling
frequency on your CPU if you run
FreeBSD operating system, hope you will
find is useful.

Table 1. Power consumption according to used CPU
frequency

MHz laptop Power
Consumption

150 22W

300 22W

450 23W

600 23W

750 24W

900 25W

1050 26W

1200 27W

1400 33W

1750 42W

2000 47W

Table 2. C-states avialable for T7300 Intel CPU

STATE EXEC WAKE UP POWER PLATFORM VOLTAGE CACHE LOSS OF
CONTEXT

C0 yes 0ns large normal normal no no

C1 no 10ns 30,00% normal normal no no

C2 no 100ns 30,00% no I/O normal no no

C3 no 50000ns 30,00% no I/O + no snoop normal no no

C4 no 160000ns 2,00% no I/O + no snoop C4_VID yes no

C5 no 200000ns N/A N/A C4_VID L2 = 0KB no

C6 no N/A N/A N/A C6_VID L2 = 0KB yes

Sławomir Wojciech Wojtczak is an
UNIX administrator focused on FreeBSD
and OpenSolaris techlologies, administrator
at biggest BSD forums (daemonforums.org),
recently finished University of Lodz, Poland
with Master of Information Technology
degree.

About the Author

Order information
(□ individual user/ □ company)

Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signed**

□ Yes, I’d like to subscribe to BSD
 magazine starting with issue:
□ 1/2008(1) FreeBSD Ins & Outs
□ 2/2008(2) OpenBSD in the Limelight
□ 1/2009(3) Explore NetBSD
□ 2/2009(4) PC-BSD Uncovered
□ 3/2009(5) Guide to FreeBSD
□ 4/2009(6)
□ 1/2010(7)
□ 2/2010(8)
□ 3/2010(9)

I understand that I will receive 4 issues over the next 12 months.

Contact Information:

EMD The Netherlands - Belgium
P.O. Box 30157
1303 AC Almere
The Netherlands

Phone + 31 (0) 36 5307118
Fax + 31 (0) 36 5407252

• visit:
 www.bsdmag.org

• call:
 + 31 (0) 36 5307118

• fill in the form and post it

Payment details:
□ USA $39.99
□ Europe 29.99€
□ World 39.99€

BSD magazine
ORDER FORM

3 EASY WAYS
to subscribe:

SAVE $20!

Why subscribe?
• save $20
• 4 issues delivered directly
 to you
• never miss an issue

Get your copy of BSD mag
and save $20 of the shop prices

44 BSD 3/2009

security corner Lightweight Directory Access Protocol

45www.bsdmag.org

LDAP
Authentication on
OpenBSD Boxes
This article will focus on a remote user / password database (LDAP) where passwords
are stored in a hashed form (SSHA). Only client side aspect will be discussed on our
favorite operating system: OpenBSD.

Nicolas Grenèche

A user directory is a user database distributed on the network.
One of the very first directories NIS (Network Information

Service), was implemented by SUN. NIS is composed of two
programs: ypserv and ypbind (yp prefix stands for yellow page,
a synonym of NIS). Ypserv is the server part of NIS. It is used to
share user information (also called maps) across the network.
Ypbind is installed on clients. This program connects ypserv
to get user information on clients. It has worked perfectly for
years but many drawbacks have arisen:

• maps are transferred in plain text on the network
• ypserv does not require any authentication of ypbind to

push maps
• password hashes were exposed on maps. A single ypcat

passwd” piped in john the ripper and the show would
begin. Some (relatively) secure implementation of NIS (i.e.,
NIS+) hide password hashes

• NIS relies on RPC (Remote Procedure Call). Ypbind asks
a program referred to as portmapper to connect ypserv.
Portmapper replies to ypbind with a random port number
used. Ypbind connects on this port to get maps. This is a
nightmare for firewalls

• Information on users are limited by UNIX information. Any
extra information must be added in GECOS field which is
not very convenient.

Thankfully, LDAP has arrived!

LDAP and authentication basics
LDAP (Lightweight Directory Access Protocol) is a massively
used protocol to store user's information. This protocol is
implemented in OpenLDAP, a directory software available on
every operating system's package manager. A LDAP directory
may contains objects (users, groups, amd maps, sudoers, DNS

zones, etc.) defined as schemas (collection of attributes for an
object) and stored in a database backend (i.e., BerkleyDB). A
user's LDAP record contains his login, uid, gid, GECOS etc. Each
UNIX user account is defined as a posixAccount class. The
process running on LDAP server is called slapd and is binded
on port 389 (plain/start_tls) or 636 (ssl). Our configuration
will rely on start_tls to secure connections (authentication of
the server against clients and crypted transactions).

Authentication is the process of proving your identity.
OpenLDAP handles authentication in two ways:

• The simple authentication: password is stored in user's
LDAP record in a hashed form (MD5, SHA1, SSHA, etc.)

• SASL (Simple Authentication and Security Layer): a layer to
plug various authentication methods (such as Kerberos)
to OpenLDAP

The major benefit of using SASL is that you do not store
any authentication information in your directory. Storing
passwords in a directory may be a non issue for many
sysadmins. The drawback is that every application on
your network should know how to deal with your external
authentication method. Moreover, LDAP authentication is
available in many applications and a very effective overlay
is implemented in OpenLDAP (ppolicy) to handle passwords
strength and aging.

Prerequisites
I am supposing that you have a running OpenLDAP server using
start_tls on your network. Anonymous bindings are allowed.
Slapd configuration is out of the scope of this article. On the
client side, some steps should be achieved before using LDAP
authentication on an OpenBSD box. First, let's install the client
part of OpenLDAP:

44 BSD 3/2009

security corner Lightweight Directory Access Protocol

45www.bsdmag.org

export PKG_PATH=ftp://

ftp.openbsd.org/pub/OpenBSD/4.4/

packages/i386

pkg_add openldap-client

This package provides two useful things:

• Headers to compile ypldap (see
below).

• Tools to manage LDAP server
(ldapsearch, ldapadd, ldapmodify, etc.)

To configure this package, edit /etc/

openldap/ldap.conf: see Listing 1 and
Table 1.. This file is given as a sample.
Feel free to modify it to fit your needs.
Configuration should be checked by an
ldapsearch:

ldapsearch -x -ZZ

This command displays publicly
accessible LDAP records of our slapd
server using a simple authentication (-x)
as an anonymous user (no binddn) with
start_tls enabled and mandatory (-ZZ).

Authentication
process in OpenBSD
To perform authentication OpenBSD relies
on BSD authentication (also known as
BSD Auth) framework. BSD Auth performs
authentication by executing scripts or
programs as separate processes from
the one requiring the authentication. These
two processes speak trough IPC (Inter
Process Communication). This provides
privilege separation: each process runs as
an identity which has only the necessary
privileges on the system. This behaviour
has significant security benefits, notably
improved fail-safeness of software,
and robustness against malicious and
accidental software bugs.

An alternative is to use PAM
(Pluggable Authentication Module). This
software comes from the Linux world
and is available on FreeBSD. Modules
providing authentication are dynamically
linked into the requesting process. This
method is considered to be more flexible
than BSD Auth but does not provide
privilege separation without additional
configuration. The same remark applies
to NSS (Name Switching Service): that's
why it is not implemented in OpenBSD.

The LDAP login component is
referred to as login_ldap on OpenBSD.
To install it:

pkg_add login_ldap

BSD Auth configuration is done trough
/etc/login.conf file. This file lists the

configuration of all available login
classes for users. Each user account has
a login class. For LDAP authentication, an
extra class must be added to login.conf.

Listing 1. /etc/openldap/ldap.conf

BASE dc=example,dc=com

URI ldap://ldapserver.example.com

TLS_CACERT /etc/openldap/ssl/cacert.pem

TLS_REQCERT demand

ssl start_tls

scope sub

bind_policy soft

Listing 2. /etc/login.conf

ldap:\

 :auth=-ldap:\

 :x-ldap-server=ldapserver.example.com,,starttls:\

 :shell=/bin/ksh:\

 :x-ldap-basedn=dc=example,dc=com:\

 :x-ldap-filter=(&(objectclass=posixAccount)(uid=%u)):\

 :x-ldap-groupdn=ou=groups,dc=example,dc=com:\

 :x-ldap-groupfilter=(&(objectClass=posixGroup)(memberUid=%u)):\

 :tc=default:

Listing 3. List of commands to cvs openbsd sources

export CVSROOT="anoncvs@anoncvs.de.openbsd.org:/cvs"

cd /usr && cvs checkout -P src

cd /usr/src/usr.sbin/ypldap

make depend && make && make install

Table 1. /etc/openldap/ldap.conf attributes

Attribute Description
BASE This is the root of your LDAP directory.
URI Contains the FQDN of your slapd server. It also indicates which method is used to

connect to slapd: ldap for plain and start_tls session and ldaps for full SSL.
TLS_CACERT Path to CA (Certificate Authority) certificate. This certficate is mandatory to check the

signature of the certificate supplied by the server.
TLS_REQCERT Specifies what checks to perform on server certificates in a TLS session.
ssl Method of ciphering transactions between client and slapd (none, ssl or start_tls).
scope Level of recursion of LDAP requests.
bind_policy Policy of client binding to slapd.

Table 2. /etc/login.conf attributes

Attribute Description
auth Name of login class.
x-ldap-server FQDN of LDAP server.
shell Force shell at login (override current shell). Bash is not available on OpenBSD

base system (ksh should be used instead).
x-ldap-basedn This is the root of your LDAP directory.
x-ldap-filter Filter used to retreive posixAccount objects from the LDAP directory.
x-ldap-groupdn Root of posixGroup objects.
x-ldap-groupfilter Filter used to retreive posixGroup objects from the LDAP directory.

46 BSD 3/2009

security corner

47www.bsdmag.org

Lightweight Directory Access Protocol

Edit /etc/login.conf and append: see
Listing 2 and Table 2.

Import users
User importation can be accomplished in
two ways. OpenBSD does not have a NSS
(Name Switching Service) mechanism like
Linux or FreeBSD. Prior to OpenBSD 4.4, all
accounts (and groups) had to be recreated
on the OpenBSD box with ldap as the login
class. Users had to be created this way:

/usr/sbin/useradd -d /home/toto -u

1002 -g 1002 -L ldap toto

This way, a user can login to OpenBSD
box with his LDAP password. A second
method appeared in OpenBSD 4.4 and
upcomings ones. This method relies on
ypldap: a new program that provides
yellow page (yp) maps to OpenBSD
using a LDAP backend. The first step is
to compile ypldap. Upcomings versions
of OpenBSD will include a binary form
of ypldap in base system. To compile it,
grab the cvs of the latest OpenBSD 4.4
source tree: see Listing 3.

If compilation process complains
about missing ldap.h, check if openldap-

client is installed. The next step is to
configure ypldap connection to your
LDAP server. This can be done through
/etc/ypldap.conf: see Listing 4.

This file specifies a name for
the domain (to stay compliant with
ypbind), maps supplied (provide map),
LDAP server's FQDN (directory), and
attribute mapping for this directory
(i.e., uid on map stands for uidNumber
in LDAP).

Like NIS, you must add the following
lines to passwd and group files: (see
Listing 5).

Listing 4. /etc/ypldap.conf

domain localdomain

interval 60

provide map passwd.byname

provide map passwd.byuid

provide map group.byname

provide map group.bygid

directory ldapserver.example.com {

basedn "dc=example=com"

passwd filter "(objectClass=posixAccount)"

attribute name maps to "uid"

fixed attribute passwd "*"

attribute uid maps to "uidNumber"

attribute gid maps to "gidNumber"

attribute gecos maps to "cn"

attribute home maps to "homeDirectory"

fixed attribute shell "/bin/ksh"

fixed attribute change "0"

fixed attribute expire "0"

fixed attribute class "ldap"

group filter "(objectClass=posixGroup)"

attribute groupname maps to "cn"

fixed attribute grouppasswd "*"

attribute groupgid maps to "gidNumber"

list groupmembers maps to "memberUid"

}

Listing 5. List of commands to permit users appending to local base
(like in NIS). All lines starting with ‘#’ are commands. ypldap -dv is also a
command and the trailing lines are its output.

#vipw

+:::::::::/bin/ksh

#echo "+:::" >> /etc/group

Then you can check if ypldap works:

ypldap -dv

configuration starting

applying configuration

connecting to directories

trying directory: X.X.X.X

starting directory update

starting directory update

updates are over, cleaning up trees now

flattening trees

pushing line: user1:*:1000:1000:ldap:12011:0:USER 1:

/home/user1:/bin/ksh

pushing line: user1:*:1000:

[...]

Listing 6. /etc/rc

if [X`domainname` != X]; then

 #if [-d /var/yp/`domainname`]; then

 # # YP server capabilities needed...

 # echo -n ' ypserv'; ypserv

${ypserv_flags}

 # #echo -n ' ypxfrd'; ypxfrd

 #fi

 #if [-d /var/yp/binding]; then

 # # YP client capabilities needed...

 # echo -n ' ypbind'; ypbind

 #fi

Listing 7. /etc/rc.local

Add your local startup actions here.

if [X"${ypldap_flags}" != X"NO"]; then

 echo -n ' ypldap'

 /usr/sbin/ypldap ${ypldap_flags} 1> /dev/null &

 sleep 10

fi

if [-d /var/yp/binding]; then

 # YP client capabilities needed...

 echo -n ' ypbind'; ypbind

fi

46 BSD 3/2009

security corner

47www.bsdmag.org

Lightweight Directory Access Protocol

This example shows how user1 (and
his user private group) is pushed from
the LDAP directory to maps. The last step
is to enable ypbind. You must specify a
domainname (the same that the one
in ypldap.conf) and launch portmapper
before running ypbind:

echo localdomain > /etc/

defaultdomain

portmap

ypbind

Now you can type in getent passwd
and getent group to check if all your
accounts and group are in maps. If not,
happy debugging!

Automation at startup
Automation of the whole process is a
bit tricky. First you must disable default

execution of all yp programs such as
ypserv, ypbind and ypxfrd. Ypserv and
ypxfrd are of no use here. Ypbind must
be disabled because if not, it tries to
start before ypldap (or ypbind relies on
ypldap). Edit /etc/rc: (see Listing 6).

Next, add startup process for ypldap
and ypbind. This can be done in /etc/
rc.local: (see Listing 7). The sleep 10
after ypldap startup is important because
it must be started and up before ypbind.
Finally, edit /etc/rc.conf.local to enable
services startup:

portmap=YES

ypldap_flags=""

Ypldap provides a flexible and secure
way to handle users from LDAP in
OpenBSD. Integration of ypldap will be
complete in version 4.5.

Hardening
and aging passwords
There are two ways of hardening passwords
in an operating system: server side and client
side. On the client side, password renewal
procedure relies on local mechanisms like
PAM (i.e., cracklib). The password policy must
be set on each computer of your network.
With OpenLDAP, it became possible to
centralize on the server the password policy.
The overlay ppolicy has been designed
for this purpose. All attributes of this policy
criteria are defined in the pwdPolicy object
(located in the ppolicy.schema file on my
Debian OpenLDAP server). This overlay
enables password composition restriction
and aging. The configuration is stored in
your LDAP database backend. To enable
it on server side just add the following to
slapd.conf as in Listing 8.

The following LDAP entry can be
added to server directory as in Listing 9.

You can specify as many password
policies as you need. To bind a user
with a non-default policy password, just
add a pwdPolicySubentry with the dn of
your custom password policy. An external
password checker can be plugged into
each policy by adding the objectClass
pwdPolicyChecker to a given policy.
This overlay implements an IETF draft
Password Policy for LDAP Directories. As
a consequence, this overlay is very likely
to become part of the LDAP standard. This
way, ppolicy operates on passwords used
for LDAP bindings. Many applications use
LDAP binding as their authentication.

Conclusions
This article will be a great help for
those who want to start with LDAP on
OpenBSD. A proper way of retreiving and
authenticating users has been awaited for
months (or years!!). Security issues with the
classical PAM and NSS couple prevented
them to be used in OpenBSD. Now, with
ypldap and login_ldap package, you can
perform authentication securely.

Nicolas Grenèche – IT security administrator
– University of Orléans – France, Ph.D
student at Security and Distributed Systems
nicolas.greneche@univ-orleans.fr
http://blog.garnett.fr (in French)
www.sds-project.fr

About the Author

Listing 8. /etc/ldap/slapd.conf

include the schema

include /usr/share/openldap/schema/ppolicy.schema

[...]

load policy module

moduleload ppolicy.la

[...]

enable ppolicy overlay

overlay ppolicy

policy location

ppolicy_default cn=hardened,ou=policies,dc=example,dc=com

Listing 9. hardened_policy.ldif

basic ldap entry

dn: cn=hardened,ou=policies,dc=example,dc=com

cn: hardened

objectClass: pwdPolicy

objectClass: organizationalRole

name of the password attribute

pwdAttribute: userPassword

password aging

pwdMaxAge: 604800

minimum size of 8 characters

pwdMinLength: 8

4 passwords in history

pwdInHistory:

strict control of password quality

pwdCheckQuality: 2

password can be locked

pwdLockout: TRUE

permanent lockout of password after 3 attempts

pwdMaxFailure: 3

pwdLockoutDuration: 0

48 BSD 3/2009

security corner FreeBSD and Snort Intrusion Detection System

49www.bsdmag.org

FreeBSD
and Snort Intrusion Detection System

What is an intrusion detection system? An Intrusion Detection System or IDS is a
software and/or hardware system designed to detect unauthorized attempts to access
computer systems through a network such as the Internet.

Svetoslav P. Chukov

These attempts can be part of hacker's attack or just
unwanted network activity. An IDS cannot directly
detect attacks within encrypted network traffic.
However, it can alert the network administrator to

potential problems within that traffic.
An intrusion detection system can detect many attacks

that can compromise the security and trust of a computer
system. These attacks target vulnerable services to take
over host computers. In order to achieve that they may try
brute force attacks to break passwords, or use viruses, Trojan
horses, and worms to trick users into surrendering sensitive
information.

An IDS is composed of several components: Sensors
which detect security events, a Console to monitor events,
send alerts and control the sensors, and a central Engine that
records events logged by the sensors. Intrusion Detection
Systems can use several output engines like database, log
files, pipes or network sockets. The last method is especially
useful if you have multiple sites and want to track activity at a
central location.

There are several ways to categorize systems depending
on the type and location of the sensors and the methodology
used by the engine to generate alerts. In this article, we will
focus on one of these types – The Network Intrusion Detection
System.

A network intrusion detection system (NIDS) is an
intrusion detection system that tries to detect malicious
activity such as denial of service attacks; port scans or
attempts to crack into computers by monitoring network
traffic.

The NIDS does this by reading all the incoming packets
and trying to match the behavior against a signature. For
example, a port scan signature is a large number of TCP
connections across many ports on several IP addresses.

A NIDS can be used not only for inspecting the incoming
and outgoing network traffic. Often local traffic may indicate
an ongoing intrusion as well.

One of the important features of the network intrusion
detection systems is that they can communicate with other
systems. They can, for example, update blacklists of suspected
IP addresses or alter firewall rules to block some specific
traffic. One such system is Snort.

Basic overview of Snort and where we can use it.
Snort is a free and open source network intrusion prevention
system (NIPS) and network intrusion detection system
(NIDS) capable of performing packet logging and real-time
traffic analysis on IP networks.

 Snort provides uses tools such as protocol analysis
and content inspection and matching to analyze and detect
hacking activity. Some of these tools also can be used to
detect and block attacks and probes, such as buffer overflows,
stealth port scans, web application attacks, SMB probes, or
OS fingerprinting attempts. The software can also be used for
intrusion prevention by dropping attacks as they are taking
place.

There are several operating modes that are available in
Snort. It can be configured to run in the following modes:

• Sniffer mode. In this mode, Snort simply reads the
packets off of the network and displays them for you on
the console.

• Packet Logger mode. This mode logs the packets to
disk.

• Network Intrusion Detection System (NIDS) mode. This
mode analyzes network traffic for matches against a
user-defined rule set and performs defensive actions
based upon what it detects.

48 BSD 3/2009

security corner FreeBSD and Snort Intrusion Detection System

49www.bsdmag.org

Listing 1a. Output of running Snort

Running in IDS mode

 --== Initializing Snort ==--

Initializing Output Plugins!

Initializing Preprocessors!

Initializing Plug-ins!

Parsing Rules file /usr/local/etc/snort/snort.conf

PortVar 'HTTP_PORTS' defined : [80]

PortVar 'SHELLCODE_PORTS' defined : [0:79 81:65535]

PortVar 'ORACLE_PORTS' defined : [1521]

Frag3 global config:

 Max frags: 65536

 Fragment memory cap: 4194304 bytes

Frag3 engine config:

 Target-based policy: FIRST

 Fragment timeout: 60 seconds

 Fragment min_ttl: 1

 Fragment ttl_limit (not used): 5

 Fragment Problems: 1

Stream5 global config:

 Track TCP sessions: ACTIVE

 Max TCP sessions: 8192

 Memcap (for reassembly packet storage): 8388608

 Track UDP sessions: INACTIVE

 Track ICMP sessions: INACTIVE

Stream5 TCP Policy config:

 Reassembly Policy: FIRST

 Timeout: 30 seconds

 Min ttl: 1

 Options:

 Static Flushpoint Sizes: YES

 Reassembly Ports:

 21 client (Footprint)

 23 client (Footprint)

 25 client (Footprint)

 42 client (Footprint)

 53 client (Footprint)

 80 client (Footprint)

 110 client (Footprint)

 111 client (Footprint)

 135 client (Footprint)

 136 client (Footprint)

 137 client (Footprint)

 139 client (Footprint)

 143 client (Footprint)

 445 client (Footprint)

 513 client (Footprint)

 514 client (Footprint)

 1433 client (Footprint)

 1521 client (Footprint)

 2401 client (Footprint)

 3306 client (Footprint)

HttpInspect Config:

 GLOBAL CONFIG

 Max Pipeline Requests: 0

 Inspection Type: STATELESS

 Detect Proxy Usage: NO

 IIS Unicode Map Filename: /usr/local/etc/snort/

unicode.map

 IIS Unicode Map Codepage: 1252

 DEFAULT SERVER CONFIG:

 Server profile: All

 Ports: 80 8080 8180

 Flow Depth: 300

 Max Chunk Length: 500000

 Max Header Field Length: 0

 Inspect Pipeline Requests: YES

 URI Discovery Strict Mode: NO

 Allow Proxy Usage: NO

 Disable Alerting: NO

 Oversize Dir Length: 500

 Only inspect URI: NO

 Ascii: YES alert: NO

 Double Decoding: YES alert: YES

 %U Encoding: YES alert: YES

 Bare Byte: YES alert: YES

 Base36: OFF

 UTF 8: OFF

 IIS Unicode: YES alert: YES

 Multiple Slash: YES alert: NO

 IIS Backslash: YES alert: NO

 Directory Traversal: YES alert: NO

 Web Root Traversal: YES alert: YES

 Apache WhiteSpace: YES alert: NO

 IIS Delimiter: YES alert: NO

 IIS Unicode Map: GLOBAL IIS UNICODE MAP CONFIG

 Non-RFC Compliant Characters: NONE

 Whitespace Characters: 0x09 0x0b 0x0c 0x0d

rpc_decode arguments:

 Ports to decode RPC on: 111 32771

 alert_fragments: INACTIVE

 alert_large_fragments: ACTIVE

 alert_incomplete: ACTIVE

 alert_multiple_requests: ACTIVE

Portscan Detection Config:

 Detect Protocols: TCP UDP ICMP IP

 Detect Scan Type: portscan portsweep decoy_portscan

distributed_portscan

 Sensitivity Level: Low

 Memcap (in bytes): 10000000

 Number of Nodes: 36900

Tagged Packet Limit: 256

Loading dynamic engine /usr/local/lib/snort/

dynamicengine/libsf_engine.so... done

Loading all dynamic preprocessor libs from /usr/local/

lib/snort/dynamicpreprocessor/...

 Loading dynamic preprocessor library /usr/local/lib/

snort/dynamicpreprocessor//lib_sfdynamic_preprocessor_

example.so... done

 Loading dynamic preprocessor library /usr/local/lib/

snort/dynamicpreprocessor//libsf_dcerpc_preproc.so...

50 BSD 3/2009

security corner

51www.bsdmag.org

FreeBSD and Snort Intrusion Detection System

Listing 1b. Output of running Snort

done

 Loading dynamic preprocessor library /usr/local/lib/

snort/dynamicpreprocessor//libsf_dns_preproc.so... done

 Loading dynamic preprocessor library /usr/local/

lib/snort/dynamicpreprocessor//libsf_ftptelnet_

preproc.so... done

 Loading dynamic preprocessor library /usr/local/lib/

snort/dynamicpreprocessor//libsf_smtp_preproc.so...

done

 Loading dynamic preprocessor library /usr/local/lib/

snort/dynamicpreprocessor//libsf_ssh_preproc.so... done

 Loading dynamic preprocessor library /usr/local/lib/

snort/dynamicpreprocessor//libsf_ssl_preproc.so... done

 Finished Loading all dynamic preprocessor libs from

/usr/local/lib/snort/dynamicpreprocessor/

FTPTelnet Config:

 GLOBAL CONFIG

 Inspection Type: stateful

 Check for Encrypted Traffic: YES alert: YES

 Continue to check encrypted data: NO

 TELNET CONFIG:

 Ports: 23

 Are You There Threshold: 200

 Normalize: YES

 Detect Anomalies: NO

 FTP CONFIG:

 FTP Server: default

 Ports: 21

 Check for Telnet Cmds: YES alert: YES

 Identify open data channels: YES

 FTP Client: default

 Check for Bounce Attacks: YES alert: YES

 Check for Telnet Cmds: YES alert: YES

 Max Response Length: 256

SMTP Config:

 Ports: 25 587 691

 Inspection Type: Stateful

 Normalize: EXPN RCPT VRFY

 Ignore Data: No

 Ignore TLS Data: No

 Ignore SMTP Alerts: No

 Max Command Line Length: Unlimited

 Max Specific Command Line Length:

 ETRN:500 EXPN:255 HELO:500 HELP:500 MAIL:260

 RCPT:300 VRFY:255

 Max Header Line Length: Unlimited

 Max Response Line Length: Unlimited

 X-Link2State Alert: Yes

 Drop on X-Link2State Alert: No

 Alert on commands: None

DCE/RPC Decoder config:

 Autodetect ports ENABLED

 SMB fragmentation ENABLED

 DCE/RPC fragmentation ENABLED

 Max Frag Size: 3000 bytes

 Memcap: 100000 KB

 Alert if memcap exceeded DISABLED

DNS config:

 DNS Client rdata txt Overflow Alert: ACTIVE

 Obsolete DNS RR Types Alert: INACTIVE

 Experimental DNS RR Types Alert: INACTIVE

 Ports: 53

SSLPP config:

 Encrypted packets: not inspected

 Ports:

 443 465 563 636 989

 992 993 994 995

+++

Initializing rule chains...

1 Snort rules read

 1 detection rules

 0 decoder rules

 0 preprocessor rules

1 Option Chains linked into 1 Chain Headers

0 Dynamic rules

+++

+-------------------[Rule Port Counts]------------------

| tcp udp icmp ip

| src 0 0 0 0

| dst 0 0 0 0

| any 1 0 0 0

| nc 1 0 0 0

| s+d 0 0 0 0

+---

+-----------------------[thresholding-config]------------

| memory-cap : 1048576 bytes

+-----------------------[thresholding-global]-----------

| none

+-----------------------[thresholding-local]------------

| none

+-----------------------[suppression]-------------------

| none

--

Rule application order: activation->dynamic->pass->drop-

>alert->log

Log directory = /var/log/snort/

Verifying Preprocessor Configurations!

0 out of 512 flowbits in use.

50 BSD 3/2009

security corner

51www.bsdmag.org

FreeBSD and Snort Intrusion Detection System

Listing 1c. Output of running Snort

*** interface device lookup found: em0

Initializing Network Interface em0

Decoding Ethernet on interface em0

[Port Based Pattern Matching Memory]

+-[AC-BNFA Search Info Summary]-----------------------

| Instances : 4

| Patterns : 69

| Pattern Chars : 297

| Num States : 225

| Num Match States : 69

| Memory : 10.83Kbytes

| Patterns : 1.63K

| Match Lists : 1.72K

| Transitions : 6.54K

+---

 --== Initialization Complete ==--

 ,,_ -*> Snort! <*-

 o")~ Version 2.8.2.1 (Build 16) FreeBSD

 '''' By Martin Roesch & The Snort Team: http:

//www.snort.org/team.html

 (C) Copyright 1998-2008 Sourcefire Inc., et

al.

 Using PCRE version: 7.7 2008-05-07

 Rules Engine: SF_SNORT_DETECTION_ENGINE

Version 1.8 <Build 14>

 Preprocessor Object: SF_SSLPP Version 1.0

<Build 1>

 Preprocessor Object: SF_SSH Version 1.1

<Build 1>

 Preprocessor Object: SF_SMTP Version 1.1

<Build 7>

 Preprocessor Object: SF_FTPTELNET Version

1.1 <Build 10>

 Preprocessor Object: SF_DNS Version 1.1

<Build 2>

 Preprocessor Object: SF_DCERPC Version 1.1

<Build 4>

 Preprocessor Object: SF_Dynamic_Example_

Preprocessor Version 1.0 <Build 1>

Not Using PCAP_FRAMES

*** Caught Int-Signal

===

========================

Packet Wire Totals:

 Received: 0

 Analyzed: 0 (0.000%)

 Dropped: 0 (0.000%)

Outstanding: 0 (0.000%)

==

=======================

Breakdown by protocol (includes rebuilt packets):

 ETH: 0 (0.000%)

 ETHdisc: 0 (0.000%)

 VLAN: 0 (0.000%)

 IPV6: 0 (0.000%)

 IP6 EXT: 0 (0.000%)

 IP6opts: 0 (0.000%)

 IP6disc: 0 (0.000%)

 IP4: 0 (0.000%)

 IP4disc: 0 (0.000%)

 TCP 6: 0 (0.000%)

 UDP 6: 0 (0.000%)

 ICMP6: 0 (0.000%)

 ICMP-IP: 0 (0.000%)

 TCP: 0 (0.000%)

 UDP: 0 (0.000%)

 ICMP: 0 (0.000%)

 TCPdisc: 0 (0.000%)

 UDPdisc: 0 (0.000%)

 ICMPdis: 0 (0.000%)

 FRAG: 0 (0.000%)

 FRAG 6: 0 (0.000%)

 ARP: 0 (0.000%)

 EAPOL: 0 (0.000%)

 ETHLOOP: 0 (0.000%)

 IPX: 0 (0.000%)

 OTHER: 0 (0.000%)

 DISCARD: 0 (0.000%)

InvChkSum: 0 (0.000%)

 S5 G 1: 0 (0.000%)

 S5 G 2: 0 (0.000%)

 Total: 0

==

=======================

Action Stats:

ALERTS: 0

LOGGED: 0

PASSED: 0

==

=======================

Frag3 statistics:

 Total Fragments: 0

 Frags Reassembled: 0

 Discards: 0

 Memory Faults: 0

 Timeouts: 0

 Overlaps: 0

 Anomalies: 0

 Alerts: 0

 FragTrackers Added: 0

 FragTrackers Dumped: 0

FragTrackers Auto Freed: 0

 Frag Nodes Inserted: 0

 Frag Nodes Deleted: 0

==

52 BSD 3/2009

security corner

53www.bsdmag.org

FreeBSD and Snort Intrusion Detection System

Preventive Medicine
As hackers become more and more

active, it is extremely important for a
server to be up-to-date with appropriate
security patches. Network security
depends on the strength of the weakest
link. When a network has weak security in
one segment of the network, regardless
of whether just a small office or home
LAN, then the machines in that network
automatically become vulnerable.

As a network administrator, in order to
increase the security and stability of the
network, I recommend putting up multiple
barriers to reduce the risk of network
penetration. An ounce of prevention is
worth more than a pound of cure.

So, what barriers do I recommend?
First, in order to have a stable and secure
operating system,

I will demonstrate how to implement
Snort using the FreeBSD operating system.
It is easy to find “dry” documentation how
to use Snort, what its options are and

what that options mean. What is rare to
encounter is documentation based on
real world experience.

An intrusion detection system like
Snort is a good tool for protecting
networks when it is setup properly. These
systems are especially beneficial when
is used in combination with optimized
operating system like FreeBSD. FreeBSD
is preferred choice for servers with
requirement for high reliability, such as
firewalls, gateways or border machines
accessible by internet. You can also use
Snort to protect applications. If you know
a particular service is vulnerable, Snort
can be used to mask the application
from attacks on that service. This is
similar to patch on the wire technology
used in high end security appliances.

I wrote a server application that
receives and sends data through a
port to other clients in the network. The
application had some known weak
points. I setup Snort to sniff the traffic,

log a message and drop the packet
if there was any attempt to exploit the
application. This is just a small area
where Snort can be useful.

The combination of FreeBSD, its
firewall, and Snort can be used for
border machines where security is of
high importance. For example with the
server mentioned before. 3 days after
the server started I analyzed the logs
and found multiple attempts to subvert
the network. The server was setup with
SSH and the application. The server
logged dozens of attempts to login with
usernames “etc”, ”jack” and “root” user.

Snort was configured to inspect the
incoming packets. Then I checked the
log file from time to time to collect new
information about the IP addresses that
“breached the line”.

In another example, I setup pppoe
to demonstrate the difficulty of internet
service providers (ISP). I would advice
any internet service providers to use Snort.
Basically, ISP could just provide an internet
connection to its customers. Unfortunately,
there are a lot of customers that use the
internet connection as a springboard for
hacking, stealing passwords or some
other illegal activity. So, in simple words, the
ISP has very difficult job.

The provider has to protect its
customers from each other and protect
their data. From one side the ISP
provides service and from the other side
this provider has to protection if it wants
to keep its customers.

Snort can be used to detect, stop, and
report illegal activity and in that case it
can make the ISP's life easier. This is just
an example how the intrusion detection
system like Snort can be useful.

Installing and Using Snort
We are at the point where I should show
you how to get snort on you machine.

To add Snort to your system, type the
following command:

pkg_add snort-2.8.2.1_1.tbz

That installed the snort on my system,
you should check if you need some
other packages to be installed, and it is
different for every system, so if the pkg_
add program needs more packages you
should install them as well.

Then you can focus on your work
with snort. Actually the work with it is very

Listing 1d. Output of running Snort

=======================

Stream5 statistics:

 Total sessions: 0

 TCP sessions: 0

 UDP sessions: 0

 ICMP sessions: 0

 TCP Prunes: 0

 UDP Prunes: 0

 ICMP Prunes: 0

TCP StreamTrackers Created: 0

TCP StreamTrackers Deleted: 0

 TCP Timeouts: 0

 TCP Overlaps: 0

 TCP Segments Queued: 0

 TCP Segments Released: 0

 TCP Rebuilt Packets: 0

 TCP Segments Used: 0

 TCP Discards: 0

 UDP Sessions Created: 0

 UDP Sessions Deleted: 0

 UDP Timeouts: 0

 UDP Discards: 0

 Events: 0

===

======

===

======

===

======

Snort exiting

Run time prior to being shutdown was 3.14117 seconds

52 BSD 3/2009

security corner

53www.bsdmag.org

FreeBSD and Snort Intrusion Detection System

simple. There is a configuration file called
snort.conf and several rules files.

I have the configuration file in
/usr/local/etc/snort/snort.conf and the
rules are there also. So, all the files are
available /usr/local/etc/snort directory.
You can use them at any location that
you want, this is not important.

Let's play with Snort!
Run Snort with the following command:

snort -c /path-to-your-config-file -de

-l /path-to-your-log-directory

That will run snort with configuration
file at your path-to-your-config-file and
log directory at /path-to-your-log-

directory.
This is some example output that you

should see(see Listing 1).

Summary.
Snort is for you if:

•. You have a FreeBSD server which is
a border machine that is accessible
from internet.

• You are ISP and you want to keep
your network safe.

• You have some services that
you want to protect against bug
exploitation.

• You simply have a server that want
to be secure.

Probably many people are wondering
for the exact reason to use FreeBSD
over the other operating systems.
Why FreeBSD, why not GNU/Linux for
example? In the beginning I said some
things about stability and security. I
am not saying that the other operating
systems are not secure and not stable
but FreeBSD has proven itself as one of
the top OSs. FreeBSD has optimal and
effective support of TCP/IP network. This
is a perfect platform for an IDS. One of
the important things for such a system
is the performance and the way how
the OS handles the network packets.
You can see that a slow system can not
be very effective with a heavy network
load. That is because all the packets
have to traverse the rules of the IDS and
that takes some time. The speed of the
packet process drives the productivity
of the IDS. This lowers the chance a
“bad” packet will get in undetected. A
clever and smart hacker can see that

you protect the network with Snort and
probably can find a way to overcome the
system. So, the performance needs to be
at a very high level to reduce the chance
that an intruder will take advantage of
this by using a brute force attack.

Against the hackers, any sign
of weakness will be exactly where
they attempt to attack. So, I would
advice you to use only the strong and
reliable combinations if you wish your
machines and network to be safe and
secure...

Listing 2. Logs

[**] [1:999369:0] A Test log [**]

[Priority: 0]

02/28-18:53:59.755446 52:54:0:12:35:2 -> 8:0:27:BF:DA:3 type:0x800 len:0x3C

192.168.0.1:3128 -> 10.0.2.15:61247 TCP TTL:64 TOS:0x0 ID:27871 IpLen:20 DgmLen:44

***A**S* Seq: 0x1554F001 Ack: 0xA122F39E Win: 0x2000 TcpLen: 24

TCP Options (1) => MSS: 1460

[**] [1:999369:0] A Test log [**]

[Priority: 0]

02/28-18:53:59.756180 52:54:0:12:35:2 -> 8:0:27:BF:DA:3 type:0x800 len:0x3C

192.168.0.1:3128 -> 10.0.2.15:61247 TCP TTL:64 TOS:0x0 ID:27872 IpLen:20 DgmLen:40

A* Seq: 0x1554F002 Ack: 0xA122F3F1 Win: 0x2238 TcpLen: 20

[**] [1:999369:0] A Test log [**]

[Priority: 0]

02/28-18:53:59.768326 52:54:0:12:35:2 -> 8:0:27:BF:DA:3 type:0x800 len:0x28E

192.168.0.1:3128 -> 10.0.2.15:61247 TCP TTL:64 TOS:0x0 ID:27873 IpLen:20 DgmLen:640

AP Seq: 0x1554F002 Ack: 0xA122F3F1 Win: 0x2238 TcpLen: 20

[**] [1:999369:0] A Test log [**]

[Priority: 0]

02/28-18:53:59.769342 52:54:0:12:35:2 -> 8:0:27:BF:DA:3 type:0x800 len:0x3C

192.168.0.1:3128 -> 10.0.2.15:61247 TCP TTL:64 TOS:0x0 ID:27874 IpLen:20 DgmLen:40

AF Seq: 0x1554F25A Ack: 0xA122F3F1 Win: 0x2238 TcpLen: 20

Svetoslav Chukov is a developer and a
system administrator of FreeBSD, NetBSD
and GNU/Linux. He is a big supporter of the
open source software and also a big friend
of *BSD and GNU/Linux. He always tries to
show their advantages over other operating
systems.

Svetoslav is interested in topics about
the performance, stability and security.
Svetoslav Chukov believes in the idea of
the Open Source.

About the Author

54 BSD 3/2009

mms Build An Embedded Video Web Server

55www.bsdmag.org

Build An Embedded Video
Web Server With NetBSD

While it's safe to say that the recently developed USB video driver was built and tested using only a
desktop “i386-compatible” machine, the beauty of NetBSD is that the same driver will work on any
NetBSD-supported hardware. So grab your favorite embedded processor and let's try some video.

Donald T. Hayford

NetBSD is recognized among the different BSD's
for supporting a wide variety of processors and
single-board computers. Part of the reason for
this is the underlying operating system design

that abstracts away the specifics of the hardware interface,
allowing high-level device drivers to work equally well for all
processor configurations. According to David Chisnall, who
wrote in NetBSD: Not Just for Toasters (NetBSD: Not Just for
Toasters, David Chisnall):

NetBSD has a well-deserved reputation for portability. Part
of this reputation comes from the driver layer, which makes use
of an abstraction layer known as the Modular Portability Layer
(MPL). This layer enables a single driver to be easily used on
all architectures by hiding details of exactly how the host talks
to the hardware and dramatically reduces the amount of work
needed to port it to a new architecture.

In an earlier issue, for example, we added the audio device
driver to the Linksys NSLU2 (Slug) ARM-based kernel in order
to play music on a Slug (Play Music On Your Slug With NetBSD,
Donald T. Hayford, BSD Magazine, Vol. 2, No. 1, 1/2008). I've
also successfully added the NetBSD Bluetooth drivers to a
NSLU2 kernel. In this article, we'll use the Slug and NetBSD to
put together a small, embedded system that can serve video
to a web browser or capture stop-action images using a UVC-
compliant USB video camera.

USB Video
The USB Video Class (UVC) specification was developed
by the USB Implementers Forum (http://www.usb.org/)
and is available at their website (See the Video Class 1.1
document set available at http://www.usb.org/developers/
devclass_docs/USB_Video_Class_1_1.zip). Initially released
in 2003, the lastest version, 1.1, came out in June, 2005, and
a UVC-compatible driver has been in OpenBSD since April,

2008. As part of the 2008 Google Summer of Code (See http:
//code.google.com/soc/2008/) project, Pat Mahoney, under
the guidance of Jared McNeill, developed a NetBSD driver
(See http://netbsd-soc.sourceforge.net/projects/uvc/ for more
information) that is UVC-compatible.

Not surprisingly, UVC support is available in Linux and
has been built in since the 2.6.26 kernel. Video programming
support has been available in Linux for a number of years in
the form of a library known as video4Linux (v4l). That library
has been updated and the standard video interface is now
known as video4Linux2 (v4l2) (See http://www.linuxtv.org/
downloads/video4linux/API/V4L2_API/ for a copy of the API).
Nearly all open source software that uses video uses one

Figure 1. The Slug sends a picture of its favorite magazine to the browser

54 BSD 3/2009

mms Build An Embedded Video Web Server

55www.bsdmag.org

of these two APIs. The NetBSD driver
is v4l2-compatible, so the NetBSD
programming interface is the same as
the Linux v4l2 API.

I'm sure that when Pat Mahoney
was developing the USB video driver,
the furthest thought from his mind was
whether that driver would also work with
a 266 MHz Arm processor with 32 MB
of memory. But it should. So, get out your
favorite NetBSD-supported embedded
processor and let's give it a try.

What you'll need:

• A processor board with Ethernet and
USB interfaces that is supported
by NetBSD. I've used the Linksys
NSLU2 and the Buffalo Kurobox
Pro/Linkstation Pro. You can even
use a desktop computer if you want,
though what fun you'll find in that I
couldn't say. The Linksys NSLU2 is
used as the example in this article
since it is better supported by
NetBSD.

• A USB camera that is compatible
with the UVC (USB Video Class)
standard. For this article, I used
a Logitech QuickCam Deluxe
for Notebooks. If the camera
documentation says Certified for
Windows Vista, then it is UVC-
compatible and will work with the
NetBSD UVC driver. Just another
of the many nice things that the
Redmond crowd has done for the
*nix world. (Note: Vista-compatible
and Certified for Windows Vista are
not the same thing.)

• A desktop computer with Linux or a
version of BSD to use for building
NetBSD, and to serve files to your
embedded system.

What you'll end up with:

• A program that can read images
from the camera and store them on
the embedded computer's disk.

• A simple webserver that can serve
images from the camera to a
browser.

• A program that can collect stop-
action video from the camera.

Get and Build
the System Software
The process of building and installing
a NetBSD kernel on the NSLU2 has

Listing 1. Steps to acquire and build NetBSD for the NSLU2

mkdir netbsd-20081215

export CVS_RSH="ssh"

export CVSROOT="anoncvs@anoncvs.NetBSD.org:/cvsroot"

cvs checkout -D 20081215-UTC src

mkdir npe

cd npe

(go to Intel website: http://www.intel.com/design/network/products/

npfamily/ixp400_current.htm, download the file IPL_ixp400NpeLibrary-2_3_

2.zip to this directory)

unzip IPL_ixp400NpeLibrary-2_3_2.zip

cd ixp400_xscale_sw/src/npeDl/

echo '#define IX_NPEDL_NPEIMAGE_NPEB_ETH' > IxNpeMicrocode.h

echo '#define IX_NPEDL_NPEIMAGE_NPEC_ETH' >> IxNpeMicrocode.h

cc ixNpeDlImageConverter.c -o foo

./foo

cp IxNpeMicrocode.dat ../../../../src/sys/arch/arm/xscale/

cd ../../../../src/sys/arch/evbarm/conf/

echo 'include "arch/evbarm/conf/NSLU2"'>NSLU2_ALL

echo 'uaudio* at uhub? port ? configuration ?' >> NSLU2_ALL

echo 'audio* at uaudio?' >> NSLU2_ALL

echo 'uvideo* at uhub?' >> NSLU2_ALL

echo 'video* at videobus?' >> NSLU2_ALL

echo 'config netbsd-vid-npe0-20081215 root on npe0 type nfs' >> NSLU2_ALL

echo 'config netbsd-vid-sd0-20081215 root on sd0a type ffs' >> NSLU2_ALL

echo 'config netbsd-vid-sd1-20081215 root on sd1a type ffs' >> NSLU2_ALL

cd ../../../../../src/

./build.sh -O ../obj-armeb -T ../tools-armeb -m evbarm-eb tools

./build.sh -O ../obj-armeb -T ../tools-armeb -D ../distrib-armeb -R ../rel-

armeb -U -u -m evbarm-eb distribution

./build.sh -O ../obj-armeb -T ../tools-armeb -D ../distrib-armeb -R ../rel-

armeb -U -u -m evbarm-eb -V \

 > KERNEL_SETS=NSLU2_ALL release

Listing 2. Obtaining and building the necessary packages

mkdir ~/pkgsource

cd ~/pkgsource

ftp ftp://ftp.NetBSD.org/pub/pkgsrc/pkgsrc-2008Q3/pkgsrc-2008Q3.tar.gz

su

(enter your root password)

tar -xzf pkgsrc-2008Q3.tar.gz -C /usr

cd /usr/pkgsrc/www/bozohttpd

make install clean

cd ../../net/wget

make install clean

vi /etc/inetd.conf

(change the two lines that start with “#http” to:)

http stream tcp nowait:600_httpd /usr/pkg/libexec/bozohttpd bozohttpd

/var/www

http stream tcp6 nowait:600_httpd /usr/pkg/libexec/bozohttpd bozohttpd

/var/www

(save the file)

chmod /var/www 775

exit

(exit superuser mode)

56 BSD 3/2009

mms

57www.bsdmag.org

Build An Embedded Video Web Server

been described many times, so I'll just
hit the highlights here. If you need more
information, see the articles in the NetBSD
wiki (See http://wiki.netbsd.se/How_to_
install_NetBSD_on_the_Linksys_NSLU2_
(Slug)_without_a_serial_port%2C_using_
NFS_and_telnet) or previous issues of
BSD Magazine (NetBSD on the NSLU2,
Donald T. Hayford, BSD Magazine, Vol. 1,
No. 1, 1/2008). Listing 1 shows all of the
steps necessary to build the kernel for the
NSLU2. If you want to try out video with a
desktop machine, you won't need to
change the kernel configuration file since
the video driver is already included in the
i386 configuration. If you want to try this
for the Kurobox Pro, refer to the 2/2009
issue of BSD Magazine (Building NetBSD
for Embedded Systems Using Cygwin,
Donald T. Hayford, BSD Magazine, Vol 2,
No. 2, 2/2009) for instructions on how to
build a kernel for that device. If you want
to use some other processor, check
it's configuration file to see if the video
device driver has already been added.
Obviously, you will need to adjust the
steps in Listing 1 for the processor type
and configuration file names that match
your particular processor.

Once you've built the kernel, you'll
need to setup the root disk and boot your
embedded computer. Instructions for the
NSLU2 or Kurobox Pro can be found

in the same references as for building
the kernel. You'll also want to set up a
non-root user that can su to root when
necessary (i.e, is a member of the wheel
group).

Next, you’ll need to get the packages
source (For more information on using
NetBSD packages, see The pkgsrc guide
at http://www.netbsd.org/docs/pkgsrc/).
While you can cross-build packages, I
think it’s easier just to do it on the Slug
(albeit, a little slower). So, boot up your
Slug and follow the steps in Listing 2 to
get the package source, install it, and
build the web server that we’ll use to
send video images to browser. There are
several web servers that will run on small
machines like the Slug; we’ll use the
Bozotic web server found at /usr/pkgsrc/
www/ bozohttpd. No, I don’t know what
Bozotic means, either. Though a goofy
name, this tiny web server is surprisingly
powerful. Also, build and install wget as
shown at the end of Listing 2 to simplify
retrieving some files later.

If you look into the available
packages that can work with video, you'll
find some nice ones, along with several,
such as xawtv, that also include a video
web server. You can even build xawtv, if
you want. But you'll run into problems if
you try to run these packages on your
embedded processor. The first is that

most of these packages expect to find
an X windows server, and so won't run
(unless, of course, you have an X server
running on your embedded processor).
Even those that run from the command
line will complain about not finding a
suitable video driver. What's up, you
ask? The problem, as far as I can tell,
is that the USB video driver is available
in -current (which is the kernel version
we built), but not yet in the standard
release. Until it is, these packages are
looking for a pci-based video card or
similar hardware, and don't yet work with
the video4Linux2 interface that the USB
driver implements. But don't worry, we'll
build our own.

Getting and Building
the Video Capture Software
To save you some typing (and typos), the
simple programs used in this article to
capture video were uploaded by Jared
McNeill to the NetBSD ftp server at
http://ftp.netbsd.org/pub/NetBSD/misc/
jmcneill/magazine.tar.gz. Listing 3 shows
how to download and build the necessary
files. Two of the files, jpeg_mangle.c and
.h, are adapted from files of the same
name from Pat Mahoney's source code
in the SourceForge CVS repository (The
CVS repository can be found at http://
netbsd-soc.cvs.sourceforge.net/netbsd-
soc/uvc/). The other c source files are
adaptations of a simple video capture
program from Jared.

After building these three programs,
run the program called grabvideo, as
shown in Listing 4. This listing also
shows the output that I got. The output
lists some of the information available
from your camera and is mostly self-
explanatory. But notice the line that starts
with pixel format: and ends with four hex
values. If the line you get looks the same,
then the rest of the programs provided
here will work for you as is; if not, you will
have a little more work to do. So what
does this all mean?

The system interface to the video
driver is captured in the file src/sys/sys/
videoio.h, a portion of which is shown
in Listing 5, while the relevant portions
of the code from videograb.c are shown
in Listing 6 After the video device is
opened, the driver is queried through
the ioctl call for the image format using
the structure defined as v4l2_format in
Listing 5. As of this writing, there are thirty

Listing 3 Acquiring and Building the Video Capture Software

mkdir ~/video

cd ~/video

wget http://ftp.netbsd.org/pub/NetBSD/misc/jmcneill/magazine.tar.gz

gunzip magazine.tar.gz

tar -xvf magazine.tar

cd magazine

cp index.html /var/www

gcc grabvideo.c jpeg_mangle.c -o grabvideo

gcc timedavigrab.c jpeg_mangle.c -o timedavigrab

gcc timedvideograb.c jpeg_mangle.c -o timedvideograb

Listing 4. Output from the grabvideo program

-bash-3.2$./grabvideo /dev/video0 testimag.jpg

video format info

height: 240

width: 320

bytes per line: 640

image size: 153600

pixel format: 47504a4d

enum field:1

grabbed 5705 bytes

56 BSD 3/2009

mms

57www.bsdmag.org

Build An Embedded Video Web Server

supported formats, ranging from simple
RGB one-to-three byte arrays to more
complicated YUV arrays or compressed
video. The format is specified by a v4l2_
fourcc macro as shown at the bottom
of Listing 5. Only a few of these are
shown in Listing 5; refer to the header
file and the v4l2 documentation for the
complete list. My camera returns a

format of 0x47504a4d, which are the four
ascii bytes G, P, J, and M, or in a mirror,
MJPG, representing Motion JPEG. This is
essentially the standard compressed
JPEG format except that the table used
for the Huffman encoding is fixed and,
thus, left out. Motion JPEG is not as good
as many of the compression routines
that use frame-to-frame predictions like

MPEG-2 or -4. However, for surveillance
cameras or other applications where
there is a signficant time gap between
frames, MJPG has the advantage that
each frame can be reconstructed without
any knowledge of previous frames. If your
camera's pixel format is MJPG (and many
are), the software as written will work for
you. If not, the software will report that it

Listing 5. Portion of the NetBSD videoio.h header file

/* $NetBSD: videoio.h,v 1.4 2008/09/25 19:34:49

jmcneill Exp $ */

<snip>

struct v4l2_pix_format {

 uint32_t width;

 uint32_t height;

 uint32_t pixelformat;

 enum v4l2_field field;

 uint32_t bytesperline;

 uint32_t sizeimage;

 enum v4l2_colorspace colorspace;

 uint32_t priv;

};

<snip>

struct v4l2_format {

 enum v4l2_buf_type type;

 union {

 struct v4l2_pix_format pix;

 struct v4l2_window win;

 struct v4l2_vbi_format vbi;

 uint8_t raw_data[200];

 } fmt;

};

<snip>

/* Pixel formats */

#define V4L2_PIX_FMT_RGB332 v4l2_fourcc('R',

'G', 'B', '1')

#define V4L2_PIX_FMT_RGB555 v4l2_fourcc('R',

'G', 'B', 'O')

#define V4L2_PIX_FMT_RGB565 v4l2_fourcc('R',

'G', 'B', 'P')

#define V4L2_PIX_FMT_RGB555X v4l2_fourcc('R',

'G', 'B', 'Q')

#define V4L2_PIX_FMT_RGB565X v4l2_fourcc('R',

'G', 'B', 'R')

<snip>

#define V4L2_PIX_FMT_MJPEG v4l2_fourcc('M', 'J', 'P',

'G')

#define V4L2_PIX_FMT_JPEG v4l2_fourcc('J', 'P', 'E',

'G')

#define V4L2_PIX_FMT_DV v4l2_fourcc('d',

'v', 's', 'd')

#define V4L2_PIX_FMT_MPEG v4l2_fourcc('M', 'P', 'E',

'G')

<snip>

Listing 6. Code Fragment from videograb.c

<snip>

int

main(int argc, char *argv[])

{

 struct v4l2_format fmt;

 uint8_t *buf;

 int ifd, ofd;

 int error;

 size_t frlen;

 ssize_t rdlen, wrlen;

 size_t huff_offset;

 if (argc != 3)

 usage();

 /* NOTREACHED */

 ifd = open(argv[1], O_RDONLY);

 if (ifd < 0) {

 perror("open camera failed");

 return EXIT_FAILURE;

 }

 ofd = open(argv[2], O_WRONLY|O_CREAT|O_EXCL,

0644);

 if (ofd < 0) {

 perror("open output failed");

 return EXIT_FAILURE;

 }

 error = ioctl(ifd, VIDIOC_G_FMT, &fmt);

 if (error) {

 perror("VIDIOC_G_FMT failed");

 return EXIT_FAILURE;

 }

 printf("video format info\n\theight: %d\n",

fmt.fmt.pix.height);

 printf("\twidth: %d\n",fmt.fmt.pix.width);

 printf("\tbytes per line: %d\n", fmt.fmt.pix.by

tesperline);

 printf("\timage size: %d\n",fmt.fmt.pix.sizeima

ge);

 printf("\tpixel format: %04x\n", fmt.fmt.pix.pi

xelformat);

 printf("\tenum field:%d\n", fmt.fmt.pix.field);

<snip>

58 BSD 3/2009

mms
couldn't figure out where the Huffman
table belonged and leave without writing
anything. In that case, you'll need to look
up your image format and change the
supplied software to output that image
format. Look around a bit with Google
and I'm sure you'll find what you need
without too much effort.

Though Motion JPEG is essentially
JPEG, most software that will work with
JPEG files won't recognize the data if
you simply write out the image received
from the camera since they expect to
find the Huffman table as part of the
image data. The routines I borrowed
from Pat Mahoney in jpeg_mangler.c/
h figure out where the Huffman table
should go and pass back a pointer
to the default UVC-specified table,
allowing us to write out a standard
JPEG image that can be read by

other image processing or display
programs. Since all standard browsers
display JPEG images, we can use that
capability to provide a dynamic display
of the video image.

The very simple web page shown
in Listing 7, index.html, sends two text
lines and an image to the browser for
display. In Listing 3, this file was put
into the proper directory (/var/www)
after we downloaded and untarred
it . The javascript embedded in the
web page then waits for two seconds
and requests a page reload from the
web server. The web browser sends
whatever image is stored in the file /
var/www/test.jpg. To make a dynamic
display, then, we'll simply write the
captured video image to a drive
periodically, and the web browser will
automatically send the latest image

every time the browser requests a
reload. I used a soft link to connect
the image saved by the software to the
image file that the web server is looking
for, as illustrated in Listing 8. Figure 1
shows a captured image in a browser
window.

On the other hand, Motion JPEG
is very similar to the QuickTime or AVI
video formats. By periodically capturing
frames and saving these directly to a file,
you can generate a stop-action video
using the virtually the same software.
The only difference is that, instead of
rewriting a single image multiple times,
you concatenate the same images. The
final piece of software, timedavigrab,
does just that, using command line
parameters to determine the time
interval between frames and the number
of total frames.

Listing 7 Simple javascript file that repetively fetches and displays a video image.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1">

 <title>Camera Display</title>

 <style type="text/css" id="mtmsheet"></style>

 </head>

 <body bgcolor = "#cedfea">

 <h4 align="center">NetBSD USB Camera Capture</h4>

 <tr>

 <div align="center">

 <I>This is a test page for the webserver!</I>

 </div>

 </tr>

 <script language="javascript">

 setTimeout("window.location.reload(true)",2000);</script>

 </body>

</html>

Listing 8. Using the timedvideograb program to generate continuously updated still images for the web server

-base-3.2$ ln -s localtest.jpg /var/www/test.jpg

-bash-3.2$./timedvideograb /dev/video0 localtest.jpg 2

video format info

 height: 240

 width: 320

 bytes per line: 640

 image size: 153600

 pixel format: 47504a4d

 enum field:1

sleep time: 2

58 BSD 3/2009

mms
Conclusion
The new NetBSD UVC video driver
appears to work flawlessly on
embedded computers as well as on
the larger and more capable desktop
machines. The package system needs
to catch up to the use of the v4l2
API, but I suspect that will happen as
NetBSD moves closer to releasing
version 5. Operated with a small
embedded device like the NSLU2, a
USB video camera can be used as a
surveillance camera or for capturing
stop-action video of slowly changing
objects. And since the NSLU2 is a
relatively low-power device, setting
up a battery-powered remote system
should be straightforward.

You'll note that the kernel we built also
incorporated the USB audio device as
well as the video device. That's because
the Logitech camera I used has both
audio and video capability. And though
we didn't use it here, you can use the /
dev/audio device to capture audio as well.
If we only had a video output device, we
could think about a small, self-contained
video conferencing system...hmm.

Don Hayford is a Research Leader at
Battelle Memorial Institute, where he
specializes in the development of data
acquisition systems for customers. Don
has been involved with microprocessors
from the time they doubled in size from
four bits to eight, and once knew how to
boot up a PDP-11 using the front panel
switches. In his career, he has written
software for the CP/M, RT-11, MS-DOS,
Apple DOS, Windows, Linux, and BSD
operating systems using assembler, Basic,
C, C++, C#, and Fortran. Married with three
children, Don and his wife like to spend
their free time cooking and travelling.

About the Author

Thanks to Pat Mahoney for developing
the USB video driver, and to Jared McNeill
for sponsoring Pat and answering my
questions.

Acknowledgments

60 BSD 3/2009

tips&tricks

61www.bsdmag.org

FreeBSD tips

Whether you're new to
FreeBSD or have been
using it for some time,
learning a new trick or two

can save you time and increase your
user experience. In this Tips & Tricks,
we'll show you how to save time at the
command line, create a trash directory
in your shell, build FreeBSD ports
without installing the ports tree, control
SSH connections, visualize rc.conf, and
create an easy-to-use environment for
controlling your FreeBSD system.

When You're Stuck at the Shell
The default shell for the FreeBSD
superuser account is tcsh. If you have
a preference for bash, you can always
pkg_add -r bash, but sometimes you
are in an environment where you can't
install additional software. No worries,
the tcsh shell supports many nicities
such as autocomplete (by pressing tab)
and history (use h or your up arrow to
review history and !number to select a
numbered command).

Note: You don't have to be the
superuser to use the tcsh shell. If you're
unsure what shell you are currently using,
ask your shell:

echo $0

/bin/tcsh

If you get back a different shellname,
type tcsh to enter the tcsh shell. Here
I'll change from the Bourne shell (sh) to
tcsh:

echo $0

sh

tcsh

echo $0

/bin/tcsh

tcsh provides dozens of built-in hotkeys
and allows you to create your own

If you're unsure what a binding does
after reading its description, type some
text at the command line and see what
happens when you try the key binding.

You can create your own key bindings,
which can be very useful for commonly
repeated actions. While you can overwrite
any current key binding, you may prefer
to search for an undefined binding:

bindkey | grep undefined

"^G" -> is undefined

"\300" -> is undefined

"\305" -> is undefined

You can then bind whatever command
(string) you wish as long as the

key mappings for commonly used
commands. You can view the current key
mappings with:

bindkey | more

Standard key bindings

"^@" -> set-mark-command

"^A" -> beginning-of-line

"^B" -> backward-char

"^C" -> tty-sigintr

The ^ means hold down the control
key while you press the character that
follows. Note that the standard key
bindings are case insensitive, meaning
^a is equivalent to ^A; however, the “multi-
character bindings are case sensitive.

FreeBSD Tips
Dru Lavigne

Listing 1. Minimal Ports Tree Installed by porteasy

ls /usr/ports/

.cvsignore INDEX-7 Makefile UIDs

www/

CHANGES INDEX-7.bz2 Mk/ UPDATING

COPYRIGHT KNOBS README converters/

CVS/ LEGAL Templates/ devel/

GIDs MOVED Tools/ misc/

cd /usr/ports/www

ls

CVS/ Makefile lynx-current/

cd lynx-current

make install clean

Listing 2. Configuring SSH for ls Only

ssh localhost

Enter passphrase for key '/home/dru /.ssh/id_rsa': mypassphrasehere

PTY allocation request failed on channel 0

Desktop

Documents

Images

Music

Videos

file1

file2

Connection to localhost closed.

60 BSD 3/2009

tips&tricks

61www.bsdmag.org

FreeBSD tips

command is enclosed in quotes. Be sure
to test your binding after creating it:

bindkey -s “^G” “csup -L2 /root/cvs-

supfile”

In this example, I've bound control g to
the command I use to check for system
updates. Now, whenever I press control
g I'll see:

csup -L2 /root/cvs-supfile

If I don't want to have to press enter after
I see the command to start it, I should
change the binding to create the newline
(press enter) for me:

bindkey -s “^G” “csup -L2 /root/cvs-

supfile\n”

Now when I press control g:

csup -L2 /root/cvs-supfile

Parsing supfile "/root/cvs-supfile"

Connecting to freebsd.nycbug.org

Connected to 66.111.2.68....

Command Line Trash Directory
If you're used to working in a GUI
environment, you may find the ability to
periodically restore files from a trash bin
quite useful. If so, you've probably noticed
that at the command line, once a file it is
deleted, it is gone forever. If you've ever been
bitten by this, consider creating a simple
script. First, cd into your home directory
and create two directories: one to hold your
script (bin) and the other to act as a hidden
trash (.trash) directory to store deleted files:

cd

mkdir bin .trash

Next, create a script called trash and
save it in your newly created bin directory.
This command shows the contents of
that file:

more ~/bin/trash

#!/bin/sh

#script to send deleted files to hidden

trash directory

mv $1 ~/.trash/

Don't forget to make the script
executable:

chmod +x ~/bin/trash

Next, create an alias to replace the rm
command with the trash script by adding
this line to ~/.cshrc:

alias rm trash

Finally, test that it works:

source ~/.cshrc

echo “some garbage text” > testfile

rm testfile

ls ~/.trash

testfile

If you ever really do want to delete a file
without sending it to the trash directory,
you can override your alias like this:

\rm filename

Keep in mind that your trash directory
will only work while you're in the shell
and it won't be available to you if the
configuration file for your shell does
not contain the alias. You may wish to
create a trash directory and rm alias for
both your regular user account and the
superuser account.

Building a Port Without
Installing the Ports Tree
If you have a slow Internet connection
or limited disk space, it can be a pain
to download and maintain the entire
ports tree. The current tarball of the ports
tree is over 42MB, and once unzipped it
can take up a few hundred MBs of disk
space. If you only build a few ports, it
makes sense to just download the part

Figure 1. Main Screen of thefish

Figure 2. Knobs Editor in thefish

62 BSD 3/2009

tips&tricks

63www.bsdmag.org

FreeBSD tips

of the ports tree that you need to build
the ports you need. This can be easily
down with the porteasy utility.

To use this utility, become the
superuser and install the porteasy
package and create an empty ports
directory:

pkg_add -r porteasy

rehash

mkdir /usr/ports

porteasy uses anonymous cvs, so you
need to prepare your environment first:

touch ~/.cvspass

setenv CVSROOT :pserver:anoncvs@anonc

vs.tw.FreeBSD.org/home/ncvs

Now, whenever you want to download
(update) the ports skeleton for an
application, specify the name of the port
you wish to build. In this example, I want to
download the skeleton for the lynx port:

porteasy -u lynx

The first time you run porteasy, it will
download the ports INDEX as well as all
the tools, templates, and Mk files that the
ports system needs. If your output ends
in a message similar to this:

Can't find required port 'lynx', maybe
you mean:

 lynx-2.8.6.5_5,1

 lynx-2.8.7d13

some required ports were not found.

It means that there are multiple
versions of the application you requested
and that you need to specify which
version you want:

porteasy -u lynx-2.8.7d13

You can get the version information
ahead of time by asking for the list:

porteasy -l lynx

Once the update command succsessfully
finishes, you can cd into the ports
directory of the application and build the
port as usual: see Listing 1.

Controlling SSH
FreeBSD comes with an SSH server
which has been pre-configured with
some security options. For example, by
default, SSH logins by the superuser
account are refused. You can further
tighten up who is allowed to SSH to your
system by modifying the SSH server
configuration file, /etc/ssh/sshd_config.

For example, to only allow logins from
the user “dru”, add this line to the bottom
of the file:

AllowUsers dru

Note that the AllowUsers keyword is
case-sensitive, meaning it won't work if
the A and the U are lowercase. You can
add multiple user accounts by placing a
space between each user. Don't forget to
tell your SSH server that you have made
changes to this file:

/etc/rc.d/sshd restart

You should also test that your changes
worked by trying to login as the specified
user (which should work) and as several
un-specified usernames (which should
fail). man sshd_config contains many
more keywords which can be used to
control behaviour such as which IPs are
allowed to connect and how users can
authenticate once they connect.

If your users are using public key
authentication, you can configure your
SSH server to allow them to connect in
order to run a command. For example,
the superuser can configure a user to
connect in order to see a listing of the files
in their home directory, but to not receive a
network terminal (pty) where they can run
additional commands. This configuration
requires you to su to that username and
modify the authorized keys file in that
user's home directory on the SSH server
by inserting this text at the very beginning
of ~username/.ssh/authorized_keys, right
before the ssh-rsa or ssh-dsa keyword:

command=”ls”,no-pty

Be sure to have that user test that ssh
works as expected: see Listing 2.

If the user instead receives a shell,
doublecheck that your inserted text is
not on its own line and is just before the
key itself.

The Authorized_Keys File Format
section of man sshd contains many more
ideas for controlling how users connect
to your SSH server and what they can do
once they get there.

Visual rc Settings
One of the beauties of FreeBSD is that
one text file, /etc/rc.conf, controls which
services start at system boot. This file is
easy to edit and man rc.conf does a great
job of letting you know what services and
options are available for this file.

But, sometimes it is nice to have
a more visual representation of the
possible services to run at system
startup. A utility known as thefish provides
an easy-to-use menu-based program for
controlling services. It is easy to install
and use (Figure 1):

pkg_add -r thefish

rehash

thefish
Figure 3. Strings Editor in thefish

62 BSD 3/2009

tips&tricks

63www.bsdmag.org

FreeBSD tips

By pressing enter with the Knobs entry
highlighted, you can see which services
are available and which will automatically
start at boot time: see Figure 2.

You can also insert options (as
described in man rc.conf) using the
Strings editor: see Figure 3.

Note: If you run thefish from a GUI,
you may instead see the GTK/QT version
which offers the same functionality with
a slightly different look and which allows
you to select options with your mouse.

Controlling your
System with Webmin
I've been a big fan of Webmin (http:
//webmin.com/) for years and continue
to be amazed as every version adds yet
more functionality and improvements.
While designed for remote administration
of server systems, it is so handy that even
novice users should consider using it to
manage their own desktops.

Note: The system you wish to control
should have webmin installed. You can
then access that system from any
system containing a web browser.

You can install and configure webmin
as follows:

pkg_add -r webmin

/usr/local/lib/webmin/setup.sh

During the setup.sh script, you can press
enter to accept the default path locations.
It is a good idea to enter a different port
number, login name, password, and
to choose y for SSL when prompted.

Once the script is finished, open a web
browser and type localhost:portnumber,
where portnumber is the port number
you chose during setup.sh.

Note: Webmin uses a self-signed
certificate for SSL connections. If your
browser complains, follow its instructions
to add an exception to accept the
certificate. Also, if for some reason
webmin did not start, you can start it with
/usr/local/etc/rc.d/webmin onestart.

Once you've logged in, you'll quickly
find that webmin allows you to control
most aspects of your system: see Figure
4.

You'll definitely want to first spend
some time in Webmin Configuration
under Webmin. Here you can control
which IP addresses and users are
allowed to connect to your webmin
server and the type of authentication to
use when connecting to webmin. You
can also install additional modules and
upgrade your version of webmin.

The System section allows you to
easily:

• control which services start at
bootup

• change user passwords
• manage disk quotas
• mount filesystems
• backup and restore directories
• install, configure, and use LDAP
• view and control running processes
• schedule commands and cron jobs
• manage packages
• read and search manpages

• manage and read logs
• manage users and groups

If you're running any services on your
system, you'll quickly become addicted
to the Servers section and the other
sections that follow. Here you can control
services such as:

• BIND DNS
• CVS
• Sendmail, Qmail and Postfix
• SSH
• Apache
• IPFW and IPFilter
• NFS
• Printers
• Bacula
• MySQL and PostgreSQL
• Samba
• SpamAssassin
• FTP
• Squid

Summary
I hope that you enjoyed these Tips &
Tricks and have found something to try on
your FreeBSD system. You can find many
more tips and tricks for BSD systems in
the books BSD Hacks, published through
O'Reilly, and The Best of FreeBSD Basics,
published by ReedMedia.

Figure 4. Webmin

Dru Lavigne is a network and systems
administrator, IT instructor, author and
international speaker. She has over a
decade of experience administering
and teaching Netware, Microsoft, Cisco,
Checkpoint, SFreeBSD BasicsCO, Solaris,
Linux and BSD systems. A prolific author,
she pens the popular FreeBSD Basics
column for O’Reilly and is author of BSD
Hacks and The Best of FreeBSD Basics.

She is currently the Editor-in-Chief of
the Open Source Business Resource, a
free monthly publication covering open
source and tBSD Certification Group
Inc.BSD Certification Group Inc.he
commercialization of open source assets.
She is founder and current Chair of the
BSD Certification Group Inc., a non-profit
organization with a mission to create
the standard for certifying BSD system
administrators.

About the Author

64 BSD 3/2009

tips & tricks

65www.bsdmag.org

tips & tricks

Recently I was asked about
maintaining a data center full of
servers. More specifically about
maintaining a repository of the

configuration files for all servers in the data
center. As our data centers and systems
in general become more sophisticated
managing the complex array of all the
configuration data in and of itself is nearly
as important as the user data stored in.

Anyone who’s ever lost a server as a
result of some catastrophic failure, be it
failed equipment or some other nefarious
means, knows it is not easy to rebuild a
system to its pre-failure state. Let’s face it
even the best backups can yield less than
accurate results should the archive media
becomes faulty. As a layer of redundancy
I like the idea of a configuration
management solution. Of course disaster
preparedness is not the only reason one
might consider implementing a some sort
of configuration management solution.

If you have a large installation of
equipment it becomes increasingly
difficult to keep track of the numerous
system updates and configuration files.
Especially if you are in an environment
with inconsistent technical staff as result
high employee turn over for instance.

Several years ago during a large
coding project I was introduced to
subversion, and although I had been
familiar wit other versioning solutions for
whatever reason svn stuck. Initially we
started with just the code base, however
the more we used it the more we put into
the repository. I ended up dropping all
of the documentation, apache, php and
mysql configuration files into it.

Shortly after completing the beta
testing we had to replicate the entire
server installation into numerous front
end production web servers. It was then
that it hit me that if we had the svn client
on each server all we would have to do

the prompt on the server named thoth, I
would run the following command;

 thoth: svn mkdir svn://

svn.olivent.com/Servers/THOTH

Notice that I placed the server name in
all capital letters. This is a habit I picked
up from customizing kernels in FreeBSD
where one would copy GENERIC to the
host name in all caps. You are certainly
free to setup your system as suits your
personal style best.

The next step is to start importing
etc and /usr/local/etc into the system.
The easiest way to accomplish this is to
execute the following in root;

 thoth: svn mkdir svn://

svn.olivent.com/Servers/THOTH/etc

 thoth: cd /etc

 thoth: sudo svn import svn://

svn.olivent.com/Servers/THOTH/etc

Although the import command should
recursively create the target for you at
the destination I have found it is better
to explicitly create it yourself. The import
command assumes that your current
working directory is the one you wish to
import. If the command is successful then
you will see numerous files listed ending

is run a checkout to have 90% of the
configuration completed.

This certainly helped expedite
server rollouts. Of course it did add an
additional step in the pre-deployment
built out. In addition to installing php,
apache, and mysql we would now have
to install svn. Although this is not a huge
task it does add a layer of complexity to
the overall schema. One could use a svn
repository to manage the build options
for your system to ensure that you are
creating nearly identical deployments.

As you can see this can snowball
rather quickly and it’s a delicate balancing
act determining where to draw the line. I my
data center I have opted for maintaining a
repository of /etc and /usr/local/etc of
each system for each server.

To keep things simple I shall assume
that you have a working repository server.
While there are several different ways to
organize this repository, I have found that
the best is to start with a group of like
servers based on function. For instance
let’s start with the named servers. Of
course I am assuming that each server
only performs a single function. If you are a
jails jockey then this is likely to be the case,
however if you are constrained by space,
power and hardware it is more likely that
each machine fills at least two billets.

Still for the sake of simplicity let’s
roll with the assumption that you only
have one service per server. In addition
we shall limit out discussion to a single
division, as some organizations will
have multiple divisions as well as being
dispersed across multiple locations.
Again for the sake so simplicity let’s
assume that you only have the one.

Very well with the basic assumptions
in place we need to construct our server
repository. After confirming that I am able to
access the svn server I begin with adding
the server to the ‘Servers’ repository. From

Maintaining System
Configuration Files Using
Subversion

Mikel King

Listing 1. Single user mode rebooting
 thoth: mkdir /tce

 thoth: cd /tce

 thoth: svn checkout svn://

svn.olivent.com/Servers/THOTH/etc

*****Reboot to single user

mode*****

 thoth: cd /

 thoth: mv etc old-etc

 thoth: mv tce/etc etc

64 BSD 3/2009

tips & tricks

65www.bsdmag.org

tips & tricks

with Committed revision XX. Where XX is
the actually of the revision number.

Using the same methodology let’s
add /usr/local/etc into the repository.

 Thoth: svn mkdir svn://

svn.olivent.com/Servers/THOTH/usr

 thoth: svn mkdir svn://

svn.olivent.com/Servers/THOTH/usr/local

 thoth: svn mkdir svn://

svn.olivent.com/Servers/THOTH/usr/

local/etc

 thoth: cd /usr/local/etc

 thoth: svn import svn://

svn.olivent.com/Servers/THOTH/usr/

local/etc

Observer that once again I explicitly
created and specified the destination.
Because import will assume the you
wish to import everything in the present
working directory I change the path to
/usr/ local/etc to ensure that I do
not collect and collateral files. you can
imagine what would happen if I imported
all of usr. Ok so now we have all of our
current configuration files imported into
the repository, but that really only helps us
half way. One of the main advantages of
using a versioning system like subversion
is to improve the ability to capture
changes to system configuration files as
well as document why those changes are
being made. Therefore in order to make
use of this we need to checkout and place
into service our versioned copies of these
files. This actually can get a bit tricky

 thoth: cd /usr/local/

 thoth: mv etc old-etc

 thoth: svn checkout svn://

svn.olivent.com/Servers/THOTH/usr/

local/etc

At this point I have accomplished storing
both /etc and /usr/local/etc in the
repository for the machine known as
THOTH. In addition I have successfully
checked out the current repository
version of /usr/local/ etc. Depending
on your system and it’s activity you
may prefer to perform the checkout to
a temp folder and drop down to single
user mode. If it’s a new system you can
probably expedite things by not. Also
keep in mind that on some systems
namely Mac OS X /etc is a symbolic link
to /private/etc which can make things
rather touchy if you do not proceed with

caution. Be certain to take the time to
make note of your systems’ peculiarities.

Continuing with the original
assumption that we are experimenting
on a FreeBSD based execute the
two command blocks outline below.
Considering that your system should
currently be in multi user mode you should
be able to safely checkout the repository
to a temp location. I’m using tce which of
course is just etc backwards. Next reboot
to single user mode, remembering to
mount -w / before you do or you’ll spin
your wheels for nothing then execute the
later command block (see Listing 1).

If all went as planned then you are now
running on your versioned system all that
remains to do is boot back up to multi user
mode. Once safely back into multi user
mode let’s try a few things. Suppose that
you assign one of your BSDAs to install
a new port that requires modifications to
your rc.conf as well as its new configuration
directory in /usr/local/etc and a new
startup script in /usr/local/etc/ rc.d.

Your Jr sysadmin successfully builds
the port and installs the new application
and even performs the the appropriate
check-ins to the repository complete with
commentary documentation as follows;

 thoth: cd /etc

 thoth: svn commit

The above should only transmit rc.conf
if you added the new_app_enable=”YES”
statement as required. Next you will want
to add the new configuration to you /usr/
local/etc section of the repository.

 thoth: cd /use/local/etc

 thoth: svn add new_app

 thoth: svn add rc.d/new_app.sh

 thoth: svn commit

Alright I know that this seems like a lot
more work but consider what happens a
few weeks later when your Jr sysadmin
reboots the sever for some other
maintenance and it hangs, dropping to
single user mode. Of course it does not
take a versioning system to locate the
missing quote on named_enable=”YES”
but it’s nice to be able to review the logs
and determine who was the last person
to modify the rc.conf and why.

Obviously there I have demonstrated
a rather time consuming manual process
for all of this and it is quite possible to

script much of the check-in and update
process once you are up and running.
Additionally after reading this brief
introduction to versioning you may be
wondering why? Why oh why would I
even submit myself to all that effect and
action tracking. I do have a good answer
for you, concise documentation.

Consider that the server you just
added to versioning is not really touched
by you for several years. Your Jr sysadmin
faithfully maintains the system checking in
all of his changes over the years and one
day, he leaves the company for a change of
career. Now what do you do? How do you
know all of the systems that this person
maintained? You could start logging in
and cataloging this manually, but perhaps
is you have a reliable versioning solution in
place you could simply run a report on his
activity over the last few months.

Another fine example is you have to
perform a site audit of all you systems.
Perhaps you’ve wanted to build a network
topology diagram for years but of course
you just haven’t had the resources
necessary to catalog hundreds of servers.
Suddenly the university you work for
has received a small grant to introduce
some GREEN initiatives and you sell them
on the idea that server consolidation
could potentially reduce their power
consumption by a sizable amount if only
you had the resources namely personnel
to complete the task in a timely fashion.

Utilizing your new team of student
helpers you task them with the job of
cataloging all of the servers. However do
you really want to grant them direct access
to everything? Perhaps if one were to use a
subversion configuration file management
system they could grant temporary read
only access to the repository. Ultimately
allowing this temporary support staff to
complete the task in a safe environment.

Mikel King has been working in the
Information Services field for over 20
years. He is currently the CEO of Olivent
Technologies, a professional creative
services partnership in NY. Additionally
he is currently serving as the Secretary
of the BSD Certification group as well as
a Senior Editor for Daemon News. Finally
he is an active JAFDIP blogger. Drop by
mikelking.com and say ‘Hi!’

About the Author

66 BSD 3/2009

let's talk

Could you introduce yourself?
John Birrell: I am an electrical engineer
by training, but a software developer in
practice. I've been contributing to FreeBSD
as a developer for over 10 years. I now
work for Juniper Networks in the JUNOS-
Core group in Sunnyvale, CA.

George Neville-Neil: I work on
networking and operating system code
for fun and profit. I also teach various
course on subjects related to computer
programming. My professional areas of
interest include code spelunking, operating
systems, networking and security.

I am the co-author with Marshall
Kirk McKusick of "The Design and
Implementaion of the FreeBSD operating
system" and I am the columnist behind
ACM Queue's "Kode Vicious".

What is DTrace?
John Birrell: DTrace is a dynamic tracing
system developed by Sun Microsystems
for their Solaris operating system.
The DTrace code was the first part of
Solaris to be open-sourced under Sun's
Common Development and Distribution
License (CDDL).

The beauty of DTrace is that it really
is dynamic. You can install probes on the
fly, look at the output for a while and then
remove the probes without restarting any
program.

What is your role in porting DTrace to
FreeBSD?
John Birrell: Like all things in FreeBSD,
the DTrace port happened because
I got intrigued after attending a
Sun Microsystems Developer Days
conference which they hold frequently
around the world.

After the conference I was so keen to
try DTrace that I tried to install Solaris on
my latest PC, but it didn't recognise the
hardware so I got nowhere.

Where can we find practical examples of
how DTrace work?
George Neville-Neil: The best resource is
the the Sun manual. The first chapter has
examples that work with the FreeBSD
version of DTrace.

http://docs.sun.com/app/docs/doc/
817-6223

Can we use DTrace to check how our
code is exploiting concurrency?
George Neville-Neil: There are ways to
get DTrace to show you what CPU is
being used by a piece of code but this is
the kind of thing I'd think you'd use other
subsystems for, such as hwpmc(4).

Can DTrace help sysadmins do their
job, or it is a tool more focused on
programmers?
John Birrell: There are things that
sysadmins can certainly benefit from. As
an example, imagine you have a suspect
user. You might want to probe what
applications the user is running. Or you
might want to trace what sockets he/she
creates to make outgoing connections.

How many times as a sysadmin have
you asked youself the question: What on
earth is this system doing?

Having DTrace on a system makes
it easier to support from outside. Even
though a sysadmin may not understand
all the kernel code, the fact that DTrace is
there allows an external support person
to provide the sysadmin a script that can
be run by the sysadmin. Before passing
on the result for analysis, the sysadmin
can check the log to ensure that there is
no private data there.

The trick with DTrace is to enable
probes which give you a brief summary
of exactly what you want to know about
instead of dumping everything and
forcing you to parse it later.

Instead I decided to port the code!
So, armed with an 86 MB download of
OpenSolaris source I set out to find out
how Dtrace was coded in Solaris.

I got some help from Sun's Bryan
Cantrill who was generous and gave me
access to the DTrace test suite before
Sun had officially open sourced it.

Is the porting process totally complete?
Is there anything that our readers might
help you with?
George Neville-Neil: There are still
providers to be worked on, such as
the PID provider, which is probably the
largest remaining piece to add.

Which platforms are supported at the
moment?
George Neville-Neil: Intel/AMD x86 32
and 64 bit definitely work. I use DTrace on
those every day.

The recent release 7.1 includes support
for using DTrace inside the kernel.
How can we take advantage of it? Do
you expect to use DTrace to profile
FreeBSD's kernel for example?
John Birrell: I use DTrace daily. I am
working on a build system that uses
DTrace to work out the dependencies.

DTrace is a great tool for profiling
kernel operation because you don't have
to build anything in permanently. The
concept of adding printf in kernel code
is gone now. To make use of DTrace, you
really need to have access to the source
code.

That is why DTrace actually makes
more sense in FreeBSD than it does in
Solaris. Our code is _always_ available.

Using DTrace is an iterative process.
Think of a question and try to probe to
test out your theory. Then when you see
some results, revise your question to
enable different probes.

Q&A about
DTrace

